3,906 research outputs found

    Verification of Unstructured Grid Adaptation Components

    Get PDF
    Adaptive unstructured grid techniques have made limited impact on production analysis workflows where the control of discretization error is critical to obtaining reliable simulation results. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic grid adaptation mechanics. Known differences and previously unknown differences in grid adaptation components and their integrated processes are identified here for study. Unstructured grid adaptation tools are verified using analytic functions and the Code Comparison Principle. Three analytic functions with different smoothness properties are adapted to show the impact of smoothness on implementation differences. A scalar advection-diffusion problem with an analytic solution that models a boundary layer is adapted to test individual grid adaptation components. Laminar flow over a delta wing and turbulent flow over an ONERA M6 wing are verified with multiple, independent grid adaptation procedures to show consistent convergence to fine-grid forces and a moment. The scalar problems illustrate known differences in a grid adaptation component implementation and a previously unknown interaction between components. The wing adaptation cases in the current study document a clear improvement to existing grid adaptation procedures. The stage is set for the infusion of verified grid adaptation into production fluid flow simulations

    Stabilization arising from PGEM : a review and further developments

    Get PDF
    The aim of this paper is twofold. First, we review the recent Petrov-Galerkin enriched method (PGEM) to stabilize numerical solutions of BVP's in primal and mixed forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem, namely, the generalized Stokes problem, and focus on a stabilized finite element method arising in a natural way after performing static condensation. The resulting stabilized method is shown to lead to optimal convergences, and afterward, it is numerically validated

    Nonlinear nonlocal multicontinua upscaling framework and its applications

    Full text link
    In this paper, we discuss multiscale methods for nonlinear problems. The main idea of these approaches is to use local constraints and solve problems in oversampled regions for constructing macroscopic equations. These techniques are intended for problems without scale separation and high contrast, which often occur in applications. For linear problems, the local solutions with constraints are used as basis functions. This technique is called Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM). GMsFEM identifies macroscopic quantities based on rigorous analysis. In corresponding upscaling methods, the multiscale basis functions are selected such that the degrees of freedom have physical meanings, such as averages of the solution on each continuum. This paper extends the linear concepts to nonlinear problems, where the local problems are nonlinear. The main concept consists of: (1) identifying macroscopic quantities; (2) constructing appropriate oversampled local problems with coarse-grid constraints; (3) formulating macroscopic equations. We consider two types of approaches. In the first approach, the solutions of local problems are used as basis functions (in a linear fashion) to solve nonlinear problems. This approach is simple to implement; however, it lacks the nonlinear interpolation, which we present in our second approach. In this approach, the local solutions are used as a nonlinear forward map from local averages (constraints) of the solution in oversampling region. This local fine-grid solution is further used to formulate the coarse-grid problem. Both approaches are discussed on several examples and applied to single-phase and two-phase flow problems, which are challenging because of convection-dominated nature of the concentration equation

    Multiscale stabilization for convection-dominated diffusion in heterogeneous media

    Get PDF
    We develop a Petrov-Galerkin stabilization method for multiscale convection-diffusion transport systems. Existing stabilization techniques add a limited number of degrees of freedom in the form of bubble functions or a modified diffusion, which may not be sufficient to stabilize multiscale systems. We seek a local reduced-order model for this kind of multiscale transport problems and thus, develop a systematic approach for finding reduced-order approximations of the solution. We start from a Petrov-Galerkin framework using optimal weighting functions. We introduce an auxiliary variable to a mixed formulation of the problem. The auxiliary variable stands for the optimal weighting function. The problem reduces to finding a test space (a dimensionally reduced space for this auxiliary variable), which guarantees that the error in the primal variable (representing the solution) is close to the projection error of the full solution on the dimensionally reduced space that approximates the solution. To find the test space, we reformulate some recent mixed Generalized Multiscale Finite Element Methods. We introduce snapshots and local spectral problems that appropriately define local weight and trial spaces. In particular, we use energy minimizing snapshots and local spectral decompositions in the natural norm associated with the auxiliary variable. The resulting spectral decomposition adaptively identifies and builds the optimal multiscale space to stabilize the system. We discuss the stability and its relation to the approximation property of the test space. We design online basis functions, which accelerate convergence in the test space, and consequently, improve stability. We present several numerical examples and show that one needs a few test functions to achieve an error similar to the projection error in the primal variable irrespective of the Peclet number

    Geometry Modeling for Unstructured Mesh Adaptation

    Get PDF
    The quantification and control of discretization error is critical to obtaining reliable simulation results. Adaptive mesh techniques have the potential to automate discretization error control, but have made limited impact on production analysis workflow. Recent progress has matured a number of independent implementations of flow solvers, error estimation methods, and anisotropic mesh adaptation mechanics. However, the poor integration of initial mesh generation and adaptive mesh mechanics to typical sources of geometry has hindered adoption of adaptive mesh techniques, where these geometries are often created in Mechanical Computer- Aided Design (MCAD) systems. The difficulty of this coupling is compounded by two factors: the inherent complexity of the model (e.g., large range of scales, bodies in proximity, details not required for analysis) and unintended geometry construction artifacts (e.g., translation, uneven parameterization, degeneracy, self-intersection, sliver faces, gaps, large tolerances be- tween topological elements, local high curvature to enforce continuity). Manual preparation of geometry is commonly employed to enable fixed-grid and adaptive-grid workflows by reducing the severity and negative impacts of these construction artifacts, but manual process interaction inhibits workflow automation. Techniques to permit the use of complex geometry models and reduce the impact of geometry construction artifacts on unstructured grid workflows are models from the AIAA Sonic Boom and High Lift Prediction are shown to demonstrate the utility of the current approach
    corecore