618 research outputs found

    A high throughput adaptive DFE for HIPERLAN

    Get PDF

    VLSI signal processing through bit-serial architectures and silicon compilation

    Get PDF

    Acoustic Echo Cancellation and their Application in ADF

    Get PDF
    In this paper, we present an overview of the principal, structure and the application of the echo cancellation and kind of application to improve the performance of the systems. Echo is a process in which a delayed and distorted version o the original sound or voice signal is reflected back to the source. For the acoustic echo canceller much and more study are required to make the good tracking speed fast and reduce the computational complexity. Due to the increasing the processing requirement, widespread implementation had to wait for advances in LSI, VLSI echo canceller appeared. DOI: 10.17762/ijritcc2321-8169.150513

    Theory, design and application of gradient adaptive lattice filters

    Get PDF
    SIGLELD:D48933/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    The design and implementation of a microprocessor controlled adaptive filter

    Get PDF
    This thesis describes the construction and implementation of a microprocessor controlled recursive adaptive filter applied as a noise canceller. It describes the concept of the adaptive noise canceller, a method of estimating the received signal corrupted with additive interference (noise). This canceller has two inputs, the primary input containing the corrupted signal and the reference input consisting of the additive noise correlated in some unknown way to the primary noise. The reference input is filtered and subtracted from the primary input without degrading the desired components of the signal. This filtering process is adaptive and based on Widrow-Hoff Least-Mean-Square algorithm. Adaptive filters are programmable and have the capability to adjust their own parameters in situations where minimum piori knowledge is available about the inputs. For recursive filters, these parameters include feed-forward (non-recursive) as well as feedback (recursive) coefficients. A new design and implementation of the adaptive filter is suggested which uses a high speed 68000 microprocessor to accomplish the coefficients updating operation. Many practical problems arising in the hardware implementation are investigated. Simulation results illustrate the ability of the adaptive noise canceller to have an acceptable performance when the coefficients updating operation is carried out once every N sampling periods. Both simulation and hardware experimental results are in agreement

    Small-kernel image restoration

    Get PDF
    The goal of image restoration is to remove degradations that are introduced during image acquisition and display. Although image restoration is a difficult task that requires considerable computation, in many applications the processing must be performed significantly faster than is possible with traditional algorithms implemented on conventional serial architectures. as demonstrated in this dissertation, digital image restoration can be efficiently implemented by convolving an image with a small kernel. Small-kernel convolution is a local operation that requires relatively little processing and can be easily implemented in parallel. A small-kernel technique must compromise effectiveness for efficiency, but if the kernel values are well-chosen, small-kernel restoration can be very effective.;This dissertation develops a small-kernel image restoration algorithm that minimizes expected mean-square restoration error. The derivation of the mean-square-optimal small kernel parallels that of the Wiener filter, but accounts for explicit spatial constraints on the kernel. This development is thorough and rigorous, but conceptually straightforward: the mean-square-optimal kernel is conditioned only on a comprehensive end-to-end model of the imaging process and spatial constraints on the kernel. The end-to-end digital imaging system model accounts for the scene, acquisition blur, sampling, noise, and display reconstruction. The determination of kernel values is directly conditioned on the specific size and shape of the kernel. Experiments presented in this dissertation demonstrate that small-kernel image restoration requires significantly less computation than a state-of-the-art implementation of the Wiener filter yet the optimal small-kernel yields comparable restored images.;The mean-square-optimal small-kernel algorithm and most other image restoration algorithms require a characterization of the image acquisition device (i.e., an estimate of the device\u27s point spread function or optical transfer function). This dissertation describes an original method for accurately determining this characterization. The method extends the traditional knife-edge technique to explicitly deal with fundamental sampled system considerations of aliasing and sample/scene phase. Results for both simulated and real imaging systems demonstrate the accuracy of the method

    On adaptive filter structure and performance

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D75686/87 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Low bit rate speech transmission: classified vector excitation coding

    Get PDF
    Vector excitation coding (VXC) is a speech digitisation technique growing in popularity. Problems associated with VXC systems are high computational complexity and poor reconstruction of plosives. The Pairwise Nearest Neighbour (PNN) clustering algorithm is proposed as an efficient method of codebook design. It is demonstrated to preserve plosives better than the Linde-Buzo-Gary (LBG) algorithm [34] and maintain similar quality to LBG for other speech Classification of the residual is then studied. This reduces codebook search complexity and enables a shortcut in computation of the PNN algorithm to be exploited
    corecore