45 research outputs found

    On the IND-CCA1 Security of FHE Schemes

    Get PDF
    Fully homomorphic encryption (FHE) is a powerful tool in cryptography that allows one to perform arbitrary computations on encrypted material without having to decrypt it first. There are numerous FHE schemes, all of which are expanded from somewhat homomorphic encryption (SHE) schemes, and some of which are considered viable in practice. However, while these FHE schemes are semantically (IND-CPA) secure, the question of their IND-CCA1 security is much less studied, and we therefore provide an overview of the IND-CCA1 security of all acknowledged FHE schemes in this paper. To give this overview, we grouped the SHE schemes into broad categories based on their similarities and underlying hardness problems. For each category, we show that the SHE schemes are susceptible to either known adaptive key recovery attacks, a natural extension of known attacks, or our proposed attacks. Finally, we discuss the known techniques to achieve IND-CCA1-secure FHE and SHE schemes. We concluded that none of the proposed schemes were IND-CCA1-secure and that the known general constructions all had their shortcomings.publishedVersio

    Studies on the Security of Selected Advanced Asymmetric Cryptographic Primitives

    Get PDF
    The main goal of asymmetric cryptography is to provide confidential communication, which allows two parties to communicate securely even in the presence of adversaries. Ever since its invention in the seventies, asymmetric cryptography has been improved and developed further, and a formal security framework has been established around it. This framework includes different security goals, attack models, and security notions. As progress was made in the field, more advanced asymmetric cryptographic primitives were proposed, with other properties in addition to confidentiality. These new primitives also have their own definitions and notions of security. This thesis consists of two parts, where the first relates to the security of fully homomorphic encryption and related primitives. The second part presents a novel cryptographic primitive, and defines what security goals the primitive should achieve. The first part of the thesis consists of Article I, II, and III, which all pertain to the security of homomorphic encryption schemes in one respect or another. Article I demonstrates that a particular fully homomorphic encryption scheme is insecure in the sense that an adversary with access only to the public material can recover the secret key. It is also shown that this insecurity mainly stems from the operations necessary to make the scheme fully homomorphic. Article II presents an adaptive key recovery attack on a leveled homomorphic encryption scheme. The scheme in question claimed to withstand precisely such attacks, and was the only scheme of its kind to do so at the time. This part of the thesis culminates with Article III, which is an overview article on the IND-CCA1 security of all acknowledged homomorphic encryption schemes. The second part of the thesis consists of Article IV, which presents Vetted Encryption (VE), a novel asymmetric cryptographic primitive. The primitive is designed to allow a recipient to vet who may send them messages, by setting up a public filter with a public verification key, and providing each vetted sender with their own encryption key. There are three different variants of VE, based on whether the sender is identifiable to the filter and/or the recipient. Security definitions, general constructions and comparisons to already existing cryptographic primitives are provided for all three variants.Doktorgradsavhandlin

    Encriptação parcialmente homomórfica CCA1-segura

    Get PDF
    Orientadores: Ricardo Dahab, Diego de Freitas AranhaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta tese nosso tema de pesquisa é a encriptação homomórfica, com foco em uma solução prática e segura para encriptação parcialmente homomórfica (somewhat homomorphic encryption - SHE), considerando o modelo de segurança conhecido como ataque de texto encriptado escolhido (chosen ciphertext attack - CCA). Este modelo pode ser subdividido em duas categorias, a saber, CCA1 e CCA2, sendo CCA2 o mais forte. Sabe-se que é impossível construir métodos de encriptação homomórfica que sejam CCA2-seguros. Por outro lado, é possível obter segurança CCA1, mas apenas um esquema foi proposto até hoje na literatura; assim, seria interessante haver outras construções oferecendo este tipo de segurança. Resumimos os principais resultados desta tese de doutorado em duas contribuições. A primeira é mostrar que a família NTRU de esquemas SHE é vulnerável a ataques de recuperação de chave privada, e portanto não são CCA1-seguros. A segunda é a utilização de computação verificável para obter esquemas SHE que são CCA1-seguros e que podem ser usados para avaliar polinômios multivariáveis quadráticos. Atualmente, métodos de encriptação homomórfica são construídos usando como substrato dois problemas de difícil solução: o MDC aproximado (approximate GCD problem - AGCD) e o problema de aprendizado com erros (learning with errors - LWE). O problema AGCD leva, em geral, a construções mais simples mas com desempenho inferior, enquanto que os esquemas baseados no problema LWE correspondem ao estado da arte nesta área de pesquisa. Recentemente, Cheon e Stehlé demonstraram que ambos problemas estão relacionados, e é uma questão interessante investigar se esquemas baseados no problema AGCD podem ser tão eficientes quanto esquemas baseados no problema LWE. Nós respondemos afirmativamente a esta questão para um cenário específico: estendemos o esquema de computação verificável proposto por Fiore, Gennaro e Pastro, de forma que use a suposição de que o problema AGCD é difícil, juntamente com o esquema DGHV adaptado para uso do Teorema Chinês dos Restos (Chinese remainder theorem - CRT) de forma a evitar ataques de recuperação de chave privadaAbstract: In this thesis we study homomorphic encryption with focus on practical and secure somewhat homomorphic encryption (SHE), under the chosen ciphertext attack (CCA) security model. This model is classified into two different main categories: CCA1 and CCA2, with CCA2 being the strongest. It is known that it is impossible to construct CCA2-secure homomorphic encryption schemes. On the other hand, CCA1-security is possible, but only one scheme is known to achieve it. It would thus be interesting to have other CCA1-secure constructions. The main results of this thesis are summarized in two contributions. The first is to show that the NTRU-family of SHE schemes is vulnerable to key recovery attacks, hence not CCA1-secure. The second is the utilization of verifiable computation to obtain a CCA1-secure SHE scheme that can be used to evaluate quadratic multivariate polynomials. Homomorphic encryption schemes are usually constructed under the assumption that two distinct problems are hard, namely the Approximate GCD (AGCD) Problem and the Learning with Errors (LWE) Problem. The AGCD problem leads, in general, to simpler constructions, but with worse performance, wheras LWE-based schemes correspond to the state-of-the-art in this research area. Recently, Cheon and Stehlé proved that both problems are related, and thus it is an interesting problem to investigate if AGCD-based SHE schemes can be made as efficient as their LWE counterparts. We answer this question positively for a specific scenario, extending the verifiable computation scheme proposed by Fiore, Gennaro and Pastro to work under the AGCD assumption, and using it together with the Chinese Remainder Theorem (CRT)-version of the DGHV scheme, in order to avoid key recovery attacksDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação143484/2011-7CNPQCAPE

    Key-Recovery Attacks Against Somewhat Homomorphic Encryption Schemes

    Get PDF
    In 1978, Rivest, Adleman and Dertouzos introduced the concept of privacy homomorphism and asked whether it is possible to perform arbitrary operations on encrypted ciphertexts. Thirty years later, Gentry gave a positive answer in his seminal paper at STOC 2009, by proposing an ingenious approach to construct fully homomorphic encryption (FHE) schemes. With this approach, one starts with a somewhat homomorphic encryption (SHE) scheme that can perform only limited number of operations on ciphertexts (i.e. it can evaluate only low-degree polynomials). Then, through the so-called bootstrapping step, it is possible to turn this SHE scheme into an FHE scheme. After Gentry's work, many SHE and FHE schemes have been proposed; in total, they can be divided into four categories, according to the hardness assumptions underlying each SHE (and hence, FHE) scheme: hard problems on lattices, the approximate common divisor problem, the (ring) learning with errors problem, and the NTRU encryption scheme. Even though SHE schemes are less powerful than FHE schemes, they can already be used in many useful real-world applications, such as medical and financial applications. It is therefore of primary concern to understand what level of security these SHE schemes provide. By default, all the SHE schemes developed so far offer IND-CPA security - i.e. resistant against a chosen-plaintext attack - but nothing is said about their IND-CCA1 security - i.e. secure against an adversary who is able to perform a non-adaptive chosen-ciphertext attack. Considering such an adversary is in fact a more realistic scenario. Gentry emphasized it as a future work to investigate SHE schemes with IND-CCA1 security, and the task to make some clarity about it was initiated by Loftus, May, Smart and Vercauteren: at SAC 2011 they showed how one family of SHE schemes is not IND-CCA1 secure, opening the doors to an interesting investigation on the IND-CCA1 security of the existing schemes in the other three families of schemes. In this work we therefore continue this line of research and show that most existing somewhat homomorphic encryption schemes are not IND-CCA1 secure. In fact, we show that these schemes suffer from key recovery attacks (stronger than a typical IND-CCA1 attack), which allow an adversary to completely recover the private keys through a number of decryption oracle queries. As a result, this dissertation shows that all known SHE schemes fail to provide IND-CCA1 security. While it is true that IND-CPA security may be enough to construct cryptographic protocols in presence of semi-honest attackers, key recovery attacks will pose serious threats for practical usage of SHE and FHE schemes: if a malicious attacker (or a compromised honest party) submits manipulated ciphertexts and observes the behavior (side channel leakage) of the decryptor, then it may be able to recover all plaintexts in the system. Therefore, it is very desirable to design SHE and FHE with IND-CCA1 security, or at least design them to prevent key recovery attacks. This raises the interesting question whether it is possible or not to develop such IND-CCA1 secure SHE scheme. Up to date, the only positive result in this direction is a SHE scheme proposed by Loftus et al. at SAC 2011 (in fact, a modification of an existing SHE scheme and IND-CCA1 insecure). However, this IND-CCA1 secure SHE scheme makes use of a non standard knowledge assumption, while it would be more interesting to only rely on standard assumptions. We propose then a variant of the SHE scheme proposed by Lopez-Alt, Tromer, and Vaikuntanathan at STOC 2012, which offers good indicators about its possible IND-CCA1 security

    A Practical Adaptive Key Recovery Attack on the LGM (GSW-like) Cryptosystem

    Get PDF
    Under embargo until: 2022-07-15We present an adaptive key recovery attack on the leveled homomorphic encryption scheme suggested by Li, Galbraith and Ma (Provsec 2016), which itself is a modification of the GSW cryptosystem designed to resist key recovery attacks by using a different linear combination of secret keys for each decryption. We were able to efficiently recover the secret key for a realistic choice of parameters using a statistical attack. In particular, this means that the Li, Galbraith and Ma strategy does not prevent adaptive key recovery attacks.acceptedVersio

    Privacy-aware Security Applications in the Era of Internet of Things

    Get PDF
    In this dissertation, we introduce several novel privacy-aware security applications. We split these contributions into three main categories: First, to strengthen the current authentication mechanisms, we designed two novel privacy-aware alternative complementary authentication mechanisms, Continuous Authentication (CA) and Multi-factor Authentication (MFA). Our first system is Wearable-assisted Continuous Authentication (WACA), where we used the sensor data collected from a wrist-worn device to authenticate users continuously. Then, we improved WACA by integrating a noise-tolerant template matching technique called NTT-Sec to make it privacy-aware as the collected data can be sensitive. We also designed a novel, lightweight, Privacy-aware Continuous Authentication (PACA) protocol. PACA is easily applicable to other biometric authentication mechanisms when feature vectors are represented as fixed-length real-valued vectors. In addition to CA, we also introduced a privacy-aware multi-factor authentication method, called PINTA. In PINTA, we used fuzzy hashing and homomorphic encryption mechanisms to protect the users\u27 sensitive profiles while providing privacy-preserving authentication. For the second privacy-aware contribution, we designed a multi-stage privacy attack to smart home users using the wireless network traffic generated during the communication of the devices. The attack works even on the encrypted data as it is only using the metadata of the network traffic. Moreover, we also designed a novel solution based on the generation of spoofed traffic. Finally, we introduced two privacy-aware secure data exchange mechanisms, which allow sharing the data between multiple parties (e.g., companies, hospitals) while preserving the privacy of the individual in the dataset. These mechanisms were realized with the combination of Secure Multiparty Computation (SMC) and Differential Privacy (DP) techniques. In addition, we designed a policy language, called Curie Policy Language (CPL), to handle the conflicting relationships among parties. The novel methods, attacks, and countermeasures in this dissertation were verified with theoretical analysis and extensive experiments with real devices and users. We believe that the research in this dissertation has far-reaching implications on privacy-aware alternative complementary authentication methods, smart home user privacy research, as well as the privacy-aware and secure data exchange methods

    Preventing Adaptive Key Recovery Attacks on the Gentry-Sahai-Waters Leveled Homomorphic Encryption Scheme

    Get PDF
    A major open problem is to protect leveled homomorphic encryption from adaptive attacks that allow an adversary to learn the private key. The only positive results in this area are by Loftus, May, Smart and Vercauteren. They use a notion of valid ciphertexts and obtain an IND-CCA1 scheme under a strong knowledge assumption, but they also show their scheme is not secure under a natural adaptive attack based on a ciphertext validity oracle . However, due to recent cryptanalysis their scheme is no longer considered secure. The main contribution of this paper is to explore a new approach to achieving this goal, which does not rely on a notion of valid ciphertexts . The idea is to generate a one-time private key every time the decryption algorithm is run, so that even if an attacker can learn some bits of the one-time private key from each decryption query, this does not allow them to compute a valid private key. This is the full version of the paper. The short version, which appeared in Provsec 2016, presented a variant of the Gentry-Sahai-Waters (GSW) levelled homomorphic encryption scheme. Damien Stehle pointed out an attack on our variant of this scheme that had not been anticipated in the Provsec paper; we explain the attack in this full version. This version of the paper also contains a new dual version of the GSW scheme. We give an explanation of why the known attacks no longer break the system. It remains an open problem to develop a scheme for which one can prove IND-CCA1 security

    Survey on Fully Homomorphic Encryption, Theory, and Applications

    Get PDF
    Data privacy concerns are increasing significantly in the context of Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by next generation networks. Homomorphic Encryption addresses privacy challenges by enabling multiple operations to be performed on encrypted messages without decryption. This paper comprehensively addresses homomorphic encryption from both theoretical and practical perspectives. The paper delves into the mathematical foundations required to understand fully homomorphic encryption (FHE). It consequently covers design fundamentals and security properties of FHE and describes the main FHE schemes based on various mathematical problems. On a more practical level, the paper presents a view on privacy-preserving Machine Learning using homomorphic encryption, then surveys FHE at length from an engineering angle, covering the potential application of FHE in fog computing, and cloud computing services. It also provides a comprehensive analysis of existing state-of-the-art FHE libraries and tools, implemented in software and hardware, and the performance thereof

    Post-Quantum and Code-Based Cryptography—Some Prospective Research Directions

    Get PDF
    Cryptography has been used from time immemorial for preserving the confidentiality of data/information in storage or transit. Thus, cryptography research has also been evolving from the classical Caesar cipher to the modern cryptosystems, based on modular arithmetic to the contemporary cryptosystems based on quantum computing. The emergence of quantum computing poses a major threat to the modern cryptosystems based on modular arithmetic, whereby even the computationally hard problems which constitute the strength of the modular arithmetic ciphers could be solved in polynomial time. This threat triggered post-quantum cryptography research to design and develop post-quantum algorithms that can withstand quantum computing attacks. This paper provides an overview of the various research directions that have been explored in post-quantum cryptography and, specifically, the various code-based cryptography research dimensions that have been explored. Some potential research directions that are yet to be explored in code-based cryptography research from the perspective of codes is a key contribution of this paper
    corecore