85 research outputs found

    Measuring the Discrepancy between Conditional Distributions: Methods, Properties and Applications

    Full text link
    We propose a simple yet powerful test statistic to quantify the discrepancy between two conditional distributions. The new statistic avoids the explicit estimation of the underlying distributions in highdimensional space and it operates on the cone of symmetric positive semidefinite (SPS) matrix using the Bregman matrix divergence. Moreover, it inherits the merits of the correntropy function to explicitly incorporate high-order statistics in the data. We present the properties of our new statistic and illustrate its connections to prior art. We finally show the applications of our new statistic on three different machine learning problems, namely the multi-task learning over graphs, the concept drift detection, and the information-theoretic feature selection, to demonstrate its utility and advantage. Code of our statistic is available at https://bit.ly/BregmanCorrentropy.Comment: manuscript accepted at IJCAI 20; added additional notes on computational complexity and auto-differentiable property; code is available at https://github.com/SJYuCNEL/Bregman-Correntropy-Conditional-Divergenc

    Robust Adaptive Generalized Correntropy-based Smoothed Graph Signal Recovery with a Kernel Width Learning

    Full text link
    This paper proposes a robust adaptive algorithm for smooth graph signal recovery which is based on generalized correntropy. A proper cost function is defined for this purpose. The proposed algorithm is derived and a kernel width learning-based version of the algorithm is suggested which the simulation results show the superiority of it to the fixed correntropy kernel version of the algorithm. Moreover, some theoretical analysis of the proposed algorithm are provided. In this regard, firstly, the convexity analysis of the cost function is discussed. Secondly, the uniform stability of the algorithm is investigated. Thirdly, the mean convergence analysis is also added. Finally, the complexity analysis of the algorithm is incorporated. In addition, some synthetic and real-world experiments show the advantage of the proposed algorithm in comparison to some other adaptive algorithms in the literature of adaptive graph signal recovery

    Proportionate Recursive Maximum Correntropy Criterion Adaptive Filtering Algorithms and their Performance Analysis

    Full text link
    The maximum correntropy criterion (MCC) has been employed to design outlier-robust adaptive filtering algorithms, among which the recursive MCC (RMCC) algorithm is a typical one. Motivated by the success of our recently proposed proportionate recursive least squares (PRLS) algorithm for sparse system identification, we propose to introduce the proportionate updating (PU) mechanism into the RMCC, leading to two sparsity-aware RMCC algorithms: the proportionate recursive MCC (PRMCC) algorithm and the combinational PRMCC (CPRMCC) algorithm. The CPRMCC is implemented as an adaptive convex combination of two PRMCC filters. For PRMCC, its stability condition and mean-square performance were analyzed. Based on the analysis, optimal parameter selection in nonstationary environments was obtained. Performance study of CPRMCC was also provided and showed that the CPRMCC performs at least as well as the better component PRMCC filter in steady state. Numerical simulations of sparse system identification corroborate the advantage of proposed algorithms as well as the validity of theoretical analysis
    • …
    corecore