258 research outputs found

    A Study of Digital Image Enlargement and Enhancement

    Get PDF
    Most image enlargement techniques suffer the problem of zigzagged edges and jagged images following enlargement. Humans are sensitive to the edges of objects; if the edges in the image are sharp, the visual is considered to be high quality. To solve this problem, this paper presents a new and effective method for image enlargement and enhancement based on adaptive inverse hyperbolic tangent (AIHT) algorithm. Conventional image enlargement and enhancement methods enlarge the image using interpolation, and subsequently enhance the image without considering image features. However, this study presents the method based on Adaptive Inverse Hyperbolic Tangent algorithm to enhance images according to image features before enlarging the image. Experimental results indicate that the proposed algorithm is capable of adaptively enhancing the image and extruding object details, thereby improving enlargements by smoothing the edge of the objects in the image

    A Vision-Based Automatic Safe landing-Site Detection System

    Get PDF
    An automatic safe landing-site detection system is proposed for aircraft emergency landing, based on visible information acquired by aircraft-mounted cameras. Emergency landing is an unplanned event in response to emergency situations. If, as is unfortunately usually the case, there is no airstrip or airfield that can be reached by the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying a safe landing-site is critical to the survival of passengers and crew. Conventionally, the pilot chooses the landing-site visually by looking at the terrain through the cockpit. The success of this vital decision greatly depends on the external environmental factors that can impair human vision, and on the pilot\u27s flight experience that can vary significantly among pilots. Therefore, we propose a robust, reliable and efficient detection system that is expected to alleviate the negative impact of these factors. In this study, we focus on the detection mechanism of the proposed system and assume that the image enhancement for increased visibility and image stitching for a larger field-of-view have already been performed on terrain images acquired by aircraft-mounted cameras. Specifically, we first propose a hierarchical elastic horizon detection algorithm to identify ground in rile image. Then the terrain image is divided into non-overlapping blocks which are clustered according to a roughness measure. Adjacent smooth blocks are merged to form potential landing-sites whose dimensions are measured with principal component analysis and geometric transformations. If the dimensions of a candidate region exceed the minimum requirement for safe landing, the potential landing-site is considered a safe candidate and highlighted on the human machine interface. At the end, the pilot makes the final decision by confirming one of the candidates, also considering other factors such as wind speed and wind direction, etc

    A novel simultaneous dynamic range compression and local contrast enhancement algorithm for digital video cameras

    Get PDF
    [[abstract]]This article addresses the problem of low dynamic range image enhancement for commercial digital cameras. A novel simultaneous dynamic range compression and local contrast enhancement algorithm (SDRCLCE) is presented to resolve this problem in a single-stage procedure. The proposed SDRCLCE algorithm is able to combine with many existent intensity transfer functions, which greatly increases the applicability of the proposed method. An adaptive intensity transfer function is also proposed to combine with SDRCLCE algorithm that provides the capability to adjustably control the level of overall lightness and contrast achieved at the enhanced output. Moreover, the proposed method is amenable to parallel processing implementation that allows us to improve the processing speed of SDRCLCE algorithm. Experimental results show that the performance of the proposed method outperforms three state-of-the-art methods in terms of dynamic range compression and local contrast enhancement.[[incitationindex]]SCI[[booktype]]電子

    Towards a High Quality Real-Time Graphics Pipeline

    Get PDF
    Modern graphics hardware pipelines create photorealistic images with high geometric complexity in real time. The quality is constantly improving and advanced techniques from feature film visual effects, such as high dynamic range images and support for higher-order surface primitives, have recently been adopted. Visual effect techniques have large computational costs and significant memory bandwidth usage. In this thesis, we identify three problem areas and propose new algorithms that increase the performance of a set of computer graphics techniques. Our main focus is on efficient algorithms for the real-time graphics pipeline, but parts of our research are equally applicable to offline rendering. Our first focus is texture compression, which is a technique to reduce the memory bandwidth usage. The core idea is to store images in small compressed blocks which are sent over the memory bus and are decompressed on-the-fly when accessed. We present compression algorithms for two types of texture formats. High dynamic range images capture environment lighting with luminance differences over a wide intensity range. Normal maps store perturbation vectors for local surface normals, and give the illusion of high geometric surface detail. Our compression formats are tailored to these texture types and have compression ratios of 6:1, high visual fidelity, and low-cost decompression logic. Our second focus is tessellation culling. Culling is a commonly used technique in computer graphics for removing work that does not contribute to the final image, such as completely hidden geometry. By discarding rendering primitives from further processing, substantial arithmetic computations and memory bandwidth can be saved. Modern graphics processing units include flexible tessellation stages, where rendering primitives are subdivided for increased geometric detail. Images with highly detailed models can be synthesized, but the incurred cost is significant. We have devised a simple remapping technique that allowsfor better tessellation distribution in screen space. Furthermore, we present programmable tessellation culling, where bounding volumes for displaced geometry are computed and used to conservatively test if a primitive can be discarded before tessellation. We introduce a general tessellation culling framework, and an optimized algorithm for rendering of displaced Bézier patches, which is expected to be a common use case for graphics hardware tessellation. Our third and final focus is forward-looking, and relates to efficient algorithms for stochastic rasterization, a rendering technique where camera effects such as depth of field and motion blur can be faithfully simulated. We extend a graphics pipeline with stochastic rasterization in spatio-temporal space and show that stochastic motion blur can be rendered with rather modest pipeline modifications. Furthermore, backface culling algorithms for motion blur and depth of field rendering are presented, which are directly applicable to stochastic rasterization. Hopefully, our work in this field brings us closer to high quality real-time stochastic rendering

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    Multi-scale active shape description in medical imaging

    Get PDF
    Shape description in medical imaging has become an increasingly important research field in recent years. Fast and high-resolution image acquisition methods like Magnetic Resonance (MR) imaging produce very detailed cross-sectional images of the human body - shape description is then a post-processing operation which abstracts quantitative descriptions of anatomically relevant object shapes. This task is usually performed by clinicians and other experts by first segmenting the shapes of interest, and then making volumetric and other quantitative measurements. High demand on expert time and inter- and intra-observer variability impose a clinical need of automating this process. Furthermore, recent studies in clinical neurology on the correspondence between disease status and degree of shape deformations necessitate the use of more sophisticated, higher-level shape description techniques. In this work a new hierarchical tool for shape description has been developed, combining two recently developed and powerful techniques in image processing: differential invariants in scale-space, and active contour models. This tool enables quantitative and qualitative shape studies at multiple levels of image detail, exploring the extra image scale degree of freedom. Using scale-space continuity, the global object shape can be detected at a coarse level of image detail, and finer shape characteristics can be found at higher levels of detail or scales. New methods for active shape evolution and focusing have been developed for the extraction of shapes at a large set of scales using an active contour model whose energy function is regularized with respect to scale and geometric differential image invariants. The resulting set of shapes is formulated as a multiscale shape stack which is analysed and described for each scale level with a large set of shape descriptors to obtain and analyse shape changes across scales. This shape stack leads naturally to several questions in regard to variable sampling and appropriate levels of detail to investigate an image. The relationship between active contour sampling precision and scale-space is addressed. After a thorough review of modem shape description, multi-scale image processing and active contour model techniques, the novel framework for multi-scale active shape description is presented and tested on synthetic images and medical images. An interesting result is the recovery of the fractal dimension of a known fractal boundary using this framework. Medical applications addressed are grey-matter deformations occurring for patients with epilepsy, spinal cord atrophy for patients with Multiple Sclerosis, and cortical impairment for neonates. Extensions to non-linear scale-spaces, comparisons to binary curve and curvature evolution schemes as well as other hierarchical shape descriptors are discussed

    Deep learning applied to computational mechanics: A comprehensive review, state of the art, and the classics

    Full text link
    Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting certain components in the traditional integration methods. Here, methods (1) and (2) relied on Long-Short-Term Memory (LSTM) architecture, with method (3) relying on convolutional neural networks. Pure ML methods to solve (nonlinear) PDEs are represented by Physics-Informed Neural network (PINN) methods, which could be combined with attention mechanism to address discontinuous solutions. Both LSTM and attention architectures, together with modern and generalized classic optimizers to include stochasticity for DL networks, are extensively reviewed. Kernel machines, including Gaussian processes, are provided to sufficient depth for more advanced works such as shallow networks with infinite width. Not only addressing experts, readers are assumed familiar with computational mechanics, but not with DL, whose concepts and applications are built up from the basics, aiming at bringing first-time learners quickly to the forefront of research. History and limitations of AI are recounted and discussed, with particular attention at pointing out misstatements or misconceptions of the classics, even in well-known references. Positioning and pointing control of a large-deformable beam is given as an example.Comment: 275 pages, 158 figures. Appeared online on 2023.03.01 at CMES-Computer Modeling in Engineering & Science

    High-fidelity colour reproduction for high-dynamic-range imaging

    Get PDF
    The aim of this thesis is to develop a colour reproduction system for high-dynamic-range (HDR) imaging. Classical colour reproduction systems fail to reproduce HDR images because current characterisation methods and colour appearance models fail to cover the dynamic range of luminance present in HDR images. HDR tone-mapping algorithms have been developed to reproduce HDR images on low-dynamic-range media such as LCD displays. However, most of these models have only considered luminance compression from a photographic point of view and have not explicitly taken into account colour appearance. Motivated by the idea to bridge the gap between crossmedia colour reproduction and HDR imaging, this thesis investigates the fundamentals and the infrastructure of cross-media colour reproduction. It restructures cross-media colour reproduction with respect to HDR imaging, and develops a novel cross-media colour reproduction system for HDR imaging. First, our HDR characterisation method enables us to measure HDR radiance values to a high accuracy that rivals spectroradiometers. Second, our colour appearance model enables us to predict human colour perception under high luminance levels. We first built a high-luminance display in order to establish a controllable high-luminance viewing environment. We conducted a psychophysical experiment on this display device to measure perceptual colour attributes. A novel numerical model for colour appearance was derived from our experimental data, which covers the full working range of the human visual system. Our appearance model predicts colour and luminance attributes under high luminance levels. In particular, our model predicts perceived lightness and colourfulness to a significantly higher accuracy than other appearance models. Finally, a complete colour reproduction pipeline is proposed using our novel HDR characterisation and colour appearance models. Results indicate that our reproduction system outperforms other reproduction methods with statistical significance. Our colour reproduction system provides high-fidelity colour reproduction for HDR imaging, and successfully bridges the gap between cross-media colour reproduction and HDR imaging
    corecore