1,258 research outputs found

    A Generalized Index for Static Voltage Stability of Unbalanced Polyphase Power Systems including Th\'evenin Equivalents and Polynomial Models

    Get PDF
    This paper proposes a Voltage Stability Index (VSI) suitable for unbalanced polyphase power systems. To this end, the grid is represented by a polyphase multiport network model (i.e., compound hybrid parameters), and the aggregate behavior of the devices in each node by Th\'evenin Equivalents (TEs) and Polynomial Models (PMs), respectively. The proposed VSI is a generalization of the known L-index, which is achieved through the use of compound electrical parameters, and the incorporation of TEs and PMs into its formal definition. Notably, the proposed VSI can handle unbalanced polyphase power systems, explicitly accounts for voltage-dependent behavior (represented by PMs), and is computationally inexpensive. These features are valuable for the operation of both transmission and distribution systems. Specifically, the ability to handle the unbalanced polyphase case is of particular value for distribution systems. In this context, it is proven that the compound hybrid parameters required for the calculation of the VSI do exist under practical conditions (i.e., for lossy grids). The proposed VSI is validated against state-of-the-art methods for voltage stability assessment using a benchmark system which is based on the IEEE 34-node feeder

    Hybrid motion/force control:a review

    Get PDF

    Neural learning enhanced variable admittance control for human-robot collaboration

    Get PDF
    © 2013 IEEE. In this paper, we propose a novel strategy for human-robot impedance mapping to realize an effective execution of human-robot collaboration. The endpoint stiffness of the human arm impedance is estimated according to the configurations of the human arm and the muscle activation levels of the upper arm. Inspired by the human adaptability in collaboration, a smooth stiffness mapping between the human arm endpoint and the robot arm joint is developed to inherit the human arm characteristics. The estimation of stiffness term is generalized to full impedance by additionally considering the damping and mass terms. Once the human arm impedance estimation is completed, a Linear Quadratic Regulator is employed for the calculation of the corresponding robot arm admittance model to match the estimated impedance parameters of the human arm. Under the variable admittance control, robot arm is governed to be complaint to the human arm impedance and the interaction force exerted by the human arm endpoint, thus the relatively optimal collaboration can be achieved. The radial basis function neural network is employed to compensate for the unknown dynamics to guarantee the performance of the controller. Comparative experiments have been conducted to verify the validity of the proposed technique

    Power System Stability With a High Penetration of Inverter-Based Resources

    Get PDF
    Inverter-based resources (IBRs) possess dynamics that are significantly different from those of synchronous-generator-based sources and as IBR penetrations grow the dynamics of power systems are changing. This article discusses the characteristics of the new dynamics and examines how they can be accommodated into the long-standing categorizations of power system stability in terms of angle, frequency, and voltage stability. It is argued that inverters are causing the frequency range over which angle, frequency, and voltage dynamics act to extend such that the previously partitioned categories are now coupled and further coupled to new electromagnetic modes. While grid-forming (GFM) inverters share many characteristics with generators, grid-following (GFL) inverters are different. This is explored in terms of similarities and differences in synchronization, inertia, and voltage control. The concept of duality is used to unify the synchronization principles of GFM and GFL inverters and, thus, established the generalized angle dynamics. This enables the analytical study of GFM-GFL interaction, which is particularly important to guide the placement of GFM apparatuses and is even more important if GFM inverters are allowed to fall back to the GFL mode during faults to avoid oversizing to support short-term overload. Both GFL and GFM inverters contribute to voltage strength but with marked differences, which implies new features of voltage stability. Several directions for further research are identified, including: 1) extensions of nonlinear stability analysis to accommodate new inverter behaviors with cross-coupled time frames; 2) establishment of spatial–temporal indices of system strength and stability margin to guide the provision of new stability services; and 3) data-driven approaches to combat increased system complexity and confidentiality of inverter models

    Real-time Voltage Stability Monitoring and Control for Load Areas: A Hybrid Approach

    Get PDF
    This dissertation proposes a hybrid approach for real-time monitoring and controlling voltage stability of a load area fed by N tie lines. This hybrid approach integrates both simulation-based and measurement-based approaches for voltage stability assessment (VSA). First, for measurement-based VSA (MBVSA), a new method is proposed for monitoring and control of load areas, which adopts an N+1 buses equivalent system so as to model and monitor individual tie lines of a load area compared to a traditional MBVSA method adopting a Thevenin equivalent. For each tie line, the new method solves the power transfer limit against voltage instability analytically as a function of all parameters of that equivalent, which is online identified from real-time synchronized measurements on boundary buses of the load area. Thus, this new MBVSA method can directly calculate the real-time power transfer limit on each tie line. Second, in order to assess the voltage stability margins under an n-1 contingency, based on the proposed MBVSA method, two sensitivity analyses have been performed, which are respectively for the parameter sensitivity of the equivalent system and the sensitivity of the tie line flow under an n-1 contingency. Third, the proposed MBVSA method implemented for both the real-time condition and potential n-1 contingencies is integrated with the simulation-based VSA approach to form a hybrid approach. The MBVSA method helps reduce the computation burden by eliminating the unimportant contingencies while the simulation-based method provides accurate information for specific “what if” scenarios such as stability limit and margin indices under n-1 contingency conditions. In addition, simulation using the model of the system can provide recommendations for preventive control if potential voltage instability is identified. This proposed hybrid VSA approach has been validated on the NPCC (Northeast Power Coordinating Council) Large-scale Test Bed (LTB) system developed by the CURENT (Center for Ultra-Wide-Area Resilient Electric Energy Transmission Networks), and also implemented on the CURENT Hardware Test Bed (HTB) system. The effectiveness of the MBVSA in real-time monitoring and closed-loop control against voltage instability has been validated

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Collaborative Bimanual Manipulation Using Optimal Motion Adaptation and Interaction Control Retargetting Human Commands to Feasible Robot Control References

    Get PDF
    This article presents a robust and reliable human–robot collaboration (HRC) framework for bimanual manipulation. We propose an optimal motion adaptation method to retarget arbitrary human commands to feasible robot pose references while maintaining payload stability. The framework comprises three modules: 1) a task-space sequential equilibrium and inverse kinematics optimization ( task-space SEIKO ) for retargeting human commands and enforcing feasibility constraints, 2) an admittance controller to facilitate compliant human–robot physical interactions, and 3) a low-level controller improving stability during physical interactions. Experimental results show that the proposed framework successfully adapted infeasible and dangerous human commands into continuous motions within safe boundaries and achieved stable grasping and maneuvering of large and heavy objects on a real dual-arm robot via teleoperation and physical interaction. Furthermore, the framework demonstrated the capability in the assembly task of building blocks and the insertion task of industrial power connectors

    Robot-Assisted Navigation for Visually Impaired through Adaptive Impedance and Path Planning

    Full text link
    This paper presents a framework to navigate visually impaired people through unfamiliar environments by means of a mobile manipulator. The Human-Robot system consists of three key components: a mobile base, a robotic arm, and the human subject who gets guided by the robotic arm via physically coupling their hand with the cobot's end-effector. These components, receiving a goal from the user, traverse a collision-free set of waypoints in a coordinated manner, while avoiding static and dynamic obstacles through an obstacle avoidance unit and a novel human guidance planner. With this aim, we also present a legs tracking algorithm that utilizes 2D LiDAR sensors integrated into the mobile base to monitor the human pose. Additionally, we introduce an adaptive pulling planner responsible for guiding the individual back to the intended path if they veer off course. This is achieved by establishing a target arm end-effector position and dynamically adjusting the impedance parameters in real-time through a impedance tuning unit. To validate the framework we present a set of experiments both in laboratory settings with 12 healthy blindfolded subjects and a proof-of-concept demonstration in a real-world scenario.Comment: 7 pages, 7 figures, submitted to IEEE International Conference on Robotics and Automation, for associated video, see https://youtu.be/B94n3QjdnJ
    • 

    corecore