11,151 research outputs found

    Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    Get PDF
    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code

    On the convergence rate of the Dirichlet-Neumann iteration for unsteady thermal fluid structure interaction

    Get PDF
    We consider the Dirichlet-Neumann iteration for partitioned simulation of thermal fluid-structure interaction, also called conjugate heat transfer. We analyze its convergence rate for two coupled fully discretized 1D linear heat equations with jumps in the material coefficients across these. These are discretized using implicit Euler in time, a finite element method on one domain, a finite volume method on the other one and variable aspect ratio. We provide an exact formula for the spectral radius of the iteration matrix. This shows that for large time steps, the convergence rate is the aspect ratio times the quotient of heat conductivities and that decreasing the time step will improve the convergence rate. Numerical results confirm the analysis and show that the 1D formula is a good estimator in 2D and even for nonlinear thermal FSI applications.Comment: 29 pages, 20 figure

    Modelling binary alloy solidification with adaptive mesh refinement

    Get PDF
    The solidification of a binary alloy results in the formation of a porous mushy layer, within which spontaneous localisation of fluid flow can lead to the emergence of features over a range of spatial scales. We describe a finite volume method for simulating binary alloy solidification in two dimensions with local mesh refinement in space and time. The coupled heat, solute, and mass transport is described using an enthalpy method with flow described by a Darcy-Brinkman equation for flow across porous and liquid regions. The resulting equations are solved on a hierarchy of block-structured adaptive grids. A projection method is used to compute the fluid velocity, whilst the viscous and nonlinear diffusive terms are calculated using a semi-implicit scheme. A series of synchronization steps ensure that the scheme is flux-conservative and correct for errors that arise at the boundaries between different levels of refinement. We also develop a corresponding method using Darcy's law for flow in a porous medium/narrow Hele-Shaw cell. We demonstrate the accuracy and efficiency of our method using established benchmarks for solidification without flow and convection in a fixed porous medium, along with convergence tests for the fully coupled code. Finally, we demonstrate the ability of our method to simulate transient mushy layer growth with narrow liquid channels which evolve over time
    • …
    corecore