2,105 research outputs found

    Impliance: A Next Generation Information Management Appliance

    Full text link
    ably successful in building a large market and adapting to the changes of the last three decades, its impact on the broader market of information management is surprisingly limited. If we were to design an information management system from scratch, based upon today's requirements and hardware capabilities, would it look anything like today's database systems?" In this paper, we introduce Impliance, a next-generation information management system consisting of hardware and software components integrated to form an easy-to-administer appliance that can store, retrieve, and analyze all types of structured, semi-structured, and unstructured information. We first summarize the trends that will shape information management for the foreseeable future. Those trends imply three major requirements for Impliance: (1) to be able to store, manage, and uniformly query all data, not just structured records; (2) to be able to scale out as the volume of this data grows; and (3) to be simple and robust in operation. We then describe four key ideas that are uniquely combined in Impliance to address these requirements, namely the ideas of: (a) integrating software and off-the-shelf hardware into a generic information appliance; (b) automatically discovering, organizing, and managing all data - unstructured as well as structured - in a uniform way; (c) achieving scale-out by exploiting simple, massive parallel processing, and (d) virtualizing compute and storage resources to unify, simplify, and streamline the management of Impliance. Impliance is an ambitious, long-term effort to define simpler, more robust, and more scalable information systems for tomorrow's enterprises.Comment: This article is published under a Creative Commons License Agreement (http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute, display, and perform the work, make derivative works and make commercial use of the work, but, you must attribute the work to the author and CIDR 2007. 3rd Biennial Conference on Innovative Data Systems Research (CIDR) January 710, 2007, Asilomar, California, US

    Common vocabularies for collective intelligence - work in progress

    Get PDF
    Web based applications and tools offer a great potential to increase the efficiency of information flow and communication among different agents during emergencies. Among the different factors, technical and non technical, that hinder the integration of an information model in emergency management sector, is a lack of a common, shared vocabulary. This paper furthers previous work in the area of ontology development, and presents a summary and overview of the goal, process and methodology to construct a shared set of metadata that can be used to map existing vocabulary. This paper is a work in progress report

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    Polyflow: a Polystore-compliant mechanism to provide interoperability to heterogeneous provenance graphs

    Get PDF
    Many scientific experiments are modeled as workflows. Workflows usually output massive amounts of data. To guarantee the reproducibility of workflows, they are usually orchestrated by Workflow Management Systems (WfMS), that capture provenance data. Provenance represents the lineage of a data fragment throughout its transformations by activities in a workflow. Provenance traces are usually represented as graphs. These graphs allows scientists to analyze and evaluate results produced by a workflow. However, each WfMS has a proprietary format for provenance and do it in different granularity levels. Therefore, in more complex scenarios in which the scientist needs to interpret provenance graphs generated by multiple WfMSs and workflows, a challenge arises. To first understand the research landscape, we conduct a Systematic Literature Mapping, assessing existing solutions under several different lenses. With a clearer understanding of the state of the art, we propose a tool called Polyflow, which is based on the concept of Polystore systems, integrating several databases of heterogeneous origin by adopting a global ProvONE schema. Polyflow allows scientists to query multiple provenance graphs in an integrated way. Polyflow was evaluated by experts using provenance data collected from real experiments that generate phylogenetic trees through workflows. The experiment results suggest that Polyflow is a viable solution for interoperating heterogeneous provenance data generated by different WfMSs, from both a usability and performance standpoint.Muitos experimentos científicos são modelados como workflows (fluxos de trabalho). Workflows produzem comumente um grande volume de dados. De forma a garantir a reprodutibilidade desses workflows, estes geralmente são orquestrados por Sistemas de Gerência de Workflows (SGWfs), garantindo que dados de proveniência sejam capturados. Dados de proveniência representam o histórico de derivação de um dado ao longo da execução do workflow. Assim, o histórico de derivação dos dados pode ser representado por meio de um grafo de proveniência. Este grafo possibilita aos cientistas analisarem e avaliarem resultados produzidos por um workflow. Todavia, cada SGWf tem seu formato proprietário de representação para dados de proveniência, e os armazenam em diferentes granularidades. Consequentemente, em cenários mais complexos em que um cientista precisa analisar de forma integrada grafos de proveniência gerados por múltiplos workflows, isso se torna desafiador. Primeiramente, para entender o campo de pesquisa, realizamos um Mapeamento Sistemático da Literatura, avaliando soluções existentes sob diferentes lentes. Com uma compreensão mais clara do atual estado da arte, propomos uma ferramenta chamada Polyflow, inspirada em conceitos de sistemas Polystore, possibilitando a integração de várias bases de dados heterogêneas por meio de uma interface de consulta única que utiliza o ProvONE como schema global. Polyflow permite que cientistas submetam consultas em múltiplos grafos de proveniência de maneira integrada. Polyflow foi avaliado em conjunto com especialistas usando dados de proveniência coletados de workflows reais que apoiam o estudo de geração de árvores filogenéticas. O resultado da avaliação mostrou a viabilidade do Polyflow para interoperar semanticamente dados de proveniência gerado por distintos SGWfs, tanto do ponto de vista de desempenho quanto de usabilidade

    Dynamic integration of biological data sources using the data concierge

    Get PDF

    Personalizing Access to Learning Networks

    Get PDF
    corecore