1,610 research outputs found

    Recommendation Systems Based on Association Rule Mining for a Target Object by Evolutionary Algorithms

    Get PDF
    Recommender systems are designed for offering products to the potential customers. Collaborative Filtering is known as a common way in Recommender systems which offers recommendations made by similar users in the case of entering time and previous transactions. Low accuracy of suggestions due to a database is one of the main concerns about collaborative filtering recommender systems. In this field, numerous researches have been done using associative rules for recommendation systems to improve accuracy but runtime of rule-based recommendation systems is high and cannot be used in the real world. So, many researchers suggest using evolutionary algorithms for finding relative best rules at runtime very fast. The present study investigated the works done for producing associative rules with higher speed and quality. In the first step Apriori-based algorithm will be introduced which is used for recommendation systems and then the Particle Swarm Optimization algorithm will be described and the issues of these 2 work will be discussed. Studying this research could help to know the issues in this research field and produce suggestions which have higher speed and quality

    RecMem: Time Aware Recommender Systems Based on Memetic Evolutionary Clustering Algorithm

    Get PDF
    Nowadays, the recommendation is an important task in the decision-making process about the selection of items especially when item space is large, diverse, and constantly updating. As a challenge in the recent systems, the preference and interest of users change over time, and existing recommender systems do not evolve optimal clustering with sufficient accuracy over time. Moreover, the behavior history of the users is determined by their neighbours. The purpose of the time parameter for this system is to extend the time-based priority. This paper has been carried out a time-aware recommender systems based on memetic evolutionary clustering algorithm called RecMem for recommendations. In this system, clusters that evolve over time using the memetic evolutionary algorithm and extract the best clusters at every timestamp, and improve the memetic algorithm using the chaos criterion. The system provides appropriate suggestions to the user based on optimum clustering. The system uses optimal evolutionary clustering using item attributes for the cold-start item problem and demographic information for the cold start user problem. The results show that the proposed method has an accuracy of approximately 0.95, which is more effective than existing systems

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Using K-means Clustering and Similarity Measure to Deal with Missing Rating in Collaborative Filtering Recommendation Systems

    Get PDF
    The Collaborative Filtering recommendation systems have been developed to address the information overload problem and personalize the content to the users for business and organizations. However, the Collaborative Filtering approach has its limitation of data sparsity and online scalability problems which result in low recommendation quality. In this thesis, a novel Collaborative Filtering approach is introduced using clustering and similarity technologies. The proposed method using K-means clustering to partition the entire dataset reduces the time complexity and improves the online scalability as well as the data density. Moreover, the similarity comparison method predicts and fills up the missing value in sparsity dataset to enhance the data density which boosts the recommendation quality. This thesis uses MovieLens dataset to investigate the proposed method, which yields amazing experimental outcome on a large sparsity data set that has a higher quality with lower time complexity than the traditional Collaborative Filtering approaches

    EvoRecSys: Evolutionary framework for health and well-being recommender systems

    Get PDF
    Hugo Alcaraz-Herrera's PhD is supported by The Mexican Council of Science and Technology (Consejo Nacional de Ciencia y Tecnologia - CONACyT).In recent years, recommender systems have been employed in domains like ecommerce, tourism, and multimedia streaming, where personalising users’ experience based on their interactions is a fundamental aspect to consider. Recent recommender system developments have also focused on well-being, yet existing solutions have been entirely designed considering one single well-being aspect in isolation, such as a healthy diet or an active lifestyle. This research introduces EvoRecSys, a novel recommendation framework that proposes evolutionary algorithms as the main recommendation engine, thereby modelling the problem of generating personalised well-being recommendations as a multi-objective optimisation problem. EvoRecSys captures the interrelation between multiple aspects of well-being by constructing configurable recommendations in the form of bundled items with dynamic properties. The preferences and a predefined well-being goal by the user are jointly considered. By instantiating the framework into an implemented model, we illustrate the use of a genetic algorithm as the recommendation engine. Finally, this implementation has been deployed as a Web application in order to conduct a users’ study.Consejo Nacional de Ciencia y Tecnologia (CONACyT
    • …
    corecore