6 research outputs found

    Design of an Adaptive Super-Twisting Control for the Cart-Pole Inverted Pendulum System

    Get PDF
    A cart-pole inverted pendulum system is one of the underactuated systems that has been used in many applications. This research aims to study the design and the effectiveness of the Adaptive Super-Twisting controller to stabilize the system by comparing it with other previous control methods. A stabilization control of the pendulum upright using the Adaptive Super-Twisting algorithm (ASTA), was investigated. The proposed controller was designed based on the decoupling algorithm method to solve the coupled control input in the system model. We then compared the proposed stabilizing controller with first-order sliding mode control (FOSMC) and Super-Twisting algorithm (STA) in Matlab/Simulink simulation and realistic computer simulation. We developed the computer simulation using anyKode Marilou software, which adopted Open-Dynamic Engine (ODE) as a physics engine. In Matlab/Simulink simulation, we considered three different scenarios: a nominal system, a system with uncertainty, and a disturbed system. Meanwhile, in a computer simulation, we only presented the comparison of different controllers' performances for the realized system. Both results showed that the three controllers could stabilize the pendulum upright with a 0.1 rad initial angular position around the vertical axis. Under the same conditions, the ASTA and STA controllers had similar performances; they both have less chattering and faster convergence than the FOSMC approach. However, the FOSMC approach had the least energy delivered and smallest errors than the other two approaches

    Design of a fuzzy PID controller for a MEMS tunable capacitor for noise reduction in a voltage reference source

    Get PDF
    This study presents a conventional Ziegler-Nichols (ZN) Proportional Integral Derivative (PID) controller, having reviewed the mathematical modeling of the Micro Electro Mechanical Systems (MEMS) Tunable Capacitors (TCs), and also proposes a fuzzy PID controller which demonstrates a better tracking performance in the presence of measurement noise, in comparison with conventional ZN-based PID controllers. Referring to importance and impact of this research, the proposed controller takes advantage of fuzzy control properties such as robustness against noise. TCs are responsible for regulating the reference voltage when integrated into Alternating Current (AC) Voltage Reference Sources (VRS). Capacitance regulation for tunable capacitors in VRS is carried out by modulating the distance of a movable plate. A successful modulation depends on maintaining the stability around the pull-in point. This distance regulation can be achieved by the proposed controller which guarantees the tracking performance of the movable plate in moving towards the pull-in point, and remaining in this critical position. The simulation results of the tracking performance and capacitance tuning are very promising, subjected to measurement nois

    Design of a fuzzy PID controller for a MEMS tunable capacitor for noise reduction in a voltage reference source

    Full text link
    This study presents a conventional Ziegler-Nichols (ZN) Proportional Integral Derivative (PID) controller, having reviewed the mathematical modeling of the Micro Electro Mechanical Systems (MEMS) Tunable Capacitors (TCs), and also proposes a fuzzy PID controller which demonstrates a better tracking performance in the presence of measurement noise, in comparison with conventional ZN-based PID controllers. Referring to importance and impact of this research, the proposed controller takes advantage of fuzzy control properties such as robustness against noise. TCs are responsible for regulating the reference voltage when integrated into Alternating Current (AC) Voltage Reference Sources (VRS). Capacitance regulation for tunable capacitors in VRS is carried out by modulating the distance of a movable plate. A successful modulation depends on maintaining the stability around the pull-in point. This distance regulation can be achieved by the proposed controller which guarantees the tracking performance of the movable plate in moving towards the pull-in point, and remaining in this critical position. The simulation results of the tracking performance and capacitance tuning are very promising, subjected to measurement noise. Article Highlights This article deals with MEMS tunable capacitor dynamics and modeling, considering measurement noise. It designs and applies fuzzy PID control system for regulating MEMS voltage reference output. This paper contributes to robustness increase in pull-in performance of the tunable capacitor

    Adaptive Fuzzy Super-Twisting Sliding Mode Control for Microgyroscope

    No full text
    This paper proposes a novel adaptive fuzzy super-twisting sliding mode control scheme for microgyroscopes with unknown model uncertainties and external disturbances. Firstly, an adaptive algorithm is used to estimate the unknown parameters and angular velocity of microgyroscopes. Secondly, in order to improve the performance of the system and the superiority of the super-twisting algorithm, this paper utilizes the universal approximation characteristic of the fuzzy system to approach the gain of the super-twisting sliding mode controller and identify the gain of the controller online, realizing the adaptive adjustment of the controller parameters. Simulation results verify the superiority and the effectiveness of the proposed approach, compared with adaptive super-twisting sliding mode control without fuzzy approximation; the proposed method is more effective
    corecore