637 research outputs found

    Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment

    Get PDF
    Multi-degrees of freedom (DOF) parallel robot, due to its compact structure and high operation accuracy, is a promising candidate for medical rehabilitation devices. However, its controllability relating to the nonlinear characteristics challenges its interaction with human subjects during the rehabilitation process. In this paper, we investigated the control of a parallel robot system using fuzzy sliding mode control (FSMC) for constructing a simple controller in practical rehabilitation, where a fuzzy logic system was used as the additional compensator to the sliding mode controller (SMC) for performance enhancement and chattering elimination. The system stability is guaranteed by the Lyapunov stability theorem. Experiments were conducted on a lower limb rehabilitation robot, which was built based on kinematics and dynamics analysis of the 6-DOF Stewart platform. The experimental results showed that the position tracking precision of the proposed FSMC is sufficient in practical applications, while the velocity chattering had been effectively reduced in comparison with the conventional FSMC with parameters tuned by fuzzy systems

    Control strategies for robotic manipulators

    Get PDF
    This survey is aimed at presenting the major robust control strategies for rigid robot manipulators. The techniques discussed are feedback linearization/Computed torque control, Variable structure compensator, Passivity based approach and Disturbance observer based control. The first one is based on complete dynamic model of a robot. It results in simple linear control which offers guaranteed stability. Variable structure compensator uses a switching/relay action to overcome dynamic uncertainties and disturbances. Passivity based controller make use of passive structure of a robot. If passivity of a feedback system is proved, nonlinearities and uncertainties will not affect the stability. Disturbance observer based controllers estimate disturbances, which can be cancelled out to achieve a nominal model, for which a simple controller can then be designed. This paper, after explaining each control strategy in detail, finally compares these strategies for their pros and cons. Possible solutions to cope with the drawbacks have also been presented in tabular form. © 2012 IEEE

    Robust prescribed trajectory tracking control of a robot manipulator using adaptive finite-time sliding mode and extreme learning machine method

    Get PDF
    This study aims to provide a robust trajectory tracking controller which guarantees the prescribed performance of a robot manipulator, both in transient and steady-state modes, experiencing parametric uncertainties. The main core of the controller is designed based on the adaptive finite-time sliding mode control (SMC) and extreme learning machine (ELM) methods to collectively estimate the parametric model uncertainties and enhance the quality of tracking performance. Accordingly, the global estimation with a fast convergence rate is achieved while the tracking error and the impact of chattering on the control input are mitigated significantly. Following the control design, the stability of the overall control system along with the finite-time convergence rate is proved, and the effectiveness of the proposed method is investigated via extensive simulation studies. The results of simulations confirm that the prescribed transient and steady-state performances are obtained with enough accuracy, fast convergence rate, robustness, and smooth control input which are all required for practical implementation and applications

    PD Based Fuzzy Sliding Mode Control of A Wheelchair Exoskeleton Robot.

    Get PDF

    Modelling and control of lightweight underwater vehicle-manipulator systems

    Get PDF
    This thesis studies the mathematical description and the low-level control structures for underwater robotic systems performing motion and interaction tasks. The main focus is on the study of lightweight underwater-vehicle manipulator systems. A description of the dynamic and hydrodynamic modelling of the underwater vehicle-manipulator system (UVMS) is presented and a study of the coupling effects between the vehicle and manipulator is given. Through simulation results it is shown that the vehicle’s capabilities are degraded by the motion of the manipulator, when it has a considerable mass with respect to the vehicle. Understanding the interaction effects between the two subsystems is beneficial in developing new control architectures that can improve the performance of the system. A control strategy is proposed for reducing the coupling effects between the two subsystems when motion tasks are required. The method is developed based on the mathematical model of the UVMS and the estimated interaction effects. Simulation results show the validity of the proposed control structure even in the presence of uncertainties in the dynamic model. The problem of autonomous interaction with the underwater environment is further addressed. The thesis proposes a parallel position/force control structure for lightweight underwater vehicle-manipulator systems. Two different strategies for integrating this control law on the vehicle-manipulator structure are proposed. The first strategy uses the parallel control law for the manipulator while a different control law, the Proportional Integral Limited control structure, is used for the vehicle. The second strategy treats the underwater vehicle-manipulator system as a single system and the parallel position/force law is used for the overall system. The low level parallel position/force control law is validated through practical experiments using the HDT-MK3-M electric manipulator. The Proportional Integral Limited control structure is tested using a 5 degrees-of-freedom underwater vehicle in a wave-tank facility. Furthermore, an adaptive tuning method based on interaction theory is proposed for adjusting the gains of the controller. The experimental results show that the method is advantageous as it decreases the complexity of the manual tuning otherwise required and reduces the energy consumption. The main objectives of this thesis are to understand and accurately represent the behaviour of an underwater vehiclemanipulator system, to evaluate this system when in contact with the environment and to design informed low-level control structures based on the observations made through the mathematical study of the system. The concepts presented in this thesis are not restricted to only vehicle-manipulator systems but can be applied to different other multibody robotic systems

    Visual Servoing in Robotics

    Get PDF
    Visual servoing is a well-known approach to guide robots using visual information. Image processing, robotics, and control theory are combined in order to control the motion of a robot depending on the visual information extracted from the images captured by one or several cameras. With respect to vision issues, a number of issues are currently being addressed by ongoing research, such as the use of different types of image features (or different types of cameras such as RGBD cameras), image processing at high velocity, and convergence properties. As shown in this book, the use of new control schemes allows the system to behave more robustly, efficiently, or compliantly, with fewer delays. Related issues such as optimal and robust approaches, direct control, path tracking, or sensor fusion are also addressed. Additionally, we can currently find visual servoing systems being applied in a number of different domains. This book considers various aspects of visual servoing systems, such as the design of new strategies for their application to parallel robots, mobile manipulators, teleoperation, and the application of this type of control system in new areas

    RBF Neural Network of Sliding Mode Control for Time-Varying 2-DOF Parallel Manipulator System

    Get PDF
    This paper presents a radial basis function (RBF) neural network control scheme for manipulators with actuator nonlinearities. The control scheme consists of a time-varying sliding mode control (TVSMC) and an RBF neural network compensator. Since the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded. The whole scheme provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of the designed scheme and the theoretical discussion

    Synchronization controller for a 3-RRR parallel manipulator

    Get PDF
    A 3-RRR parallel manipulator has been well-known as a closed-loop kinematic chain mechanism in which the end-effector generally a moving platform is connected to the base by several independent actuators. Performance of the robot is decided by performances of the component actuators which are independently driven by tracking controllers without acknowledging information from each other. The platform performance is degraded if any actuator could not be driven well. Therefore, this paper aims to develop an advanced synchronization (SYNC) controller for position tracking of a 3-RRR parallel robot using three DC motor-driven actuators. The proposed control scheme consists of three sliding mode controllers (SMC) to drive the actuators and a supervisory controller named PID-neural network controller (PIDNNC) to compensate the synchronization errors due to system nonlinearities, uncertainties and external disturbances. A Lyapunov stability condition is added to the PIDNNC training mechanism to ensure the robust tracking performance of the manipulator. Numerical simulations have been performed under different working conditions to demonstrate the effectiveness of the suggested control approach

    Design New Online Tuning Intelligent Chattering Free Fuzzy Compensator

    Full text link

    RBFNN based adaptive control of uncertain robot manipulators in discrete time

    Get PDF
    • …
    corecore