80 research outputs found

    Adaptive Fuzzy Containment Control for Uncertain Nonlinear Multiagent Systems

    Get PDF
    This paper considers the containment control problem for uncertain nonlinear multiagent systems under directed graphs. The followers are governed by nonlinear systems with unknown dynamics while the multiple leaders are neighbors of a subset of the followers. Fuzzy logic systems (FLSs) are used to identify the unknown dynamics and a distributed state feedback containment control protocol is proposed. This result is extended to the output feedback case, where observers are designed to estimate the unmeasurable states. Then, an output feedback containment control scheme is presented. The developed state feedback and output feedback containment controllers guarantee that the states of all followers converge to the convex hull spanned by the dynamic leaders. Based on Lyapunov stability theory, it is proved that the containment control errors are uniformly ultimately bounded (UUB). An example is provided to show the effectiveness of the proposed control method

    Coordinated Control and Estimation of Multiagent Systems with Engineering Applications

    Get PDF
    Recently, coordinated control and estimation problems have attracted a great deal of attention in different fields especially in biology, physics, computer science, and control engineering. Coordinated control and estimation problems have prominent characteristics of distributed control, local interaction, and self-organization. Research on multiagent coordinated control and estimation problems not only helps better understand the mechanisms of natural collective phenomena but also benefits the applications of cyberphysical systems. This special issue focuses on theoretical and technological achievements in cooperative multiagent Systems. It contains twenty-six papers, the contents of which are summarized below

    Adaptive neural network control of underactuated surface vessels with guaranteed transient performance: Theory and experimental results

    Get PDF
    In this paper, an adaptive trajectory trackingcontrol algorithm for underactuated unmanned surfacevessels (USVs) with guaranteed transient performance isproposed. To meet the realistic dynamical model of USVs,we consider that the mass and damping matrices are notdiagonal and the input saturation problem. Neural Networks(NNs) are employed to approximate the unknown externaldisturbances and uncertain hydrodynamics of USVs. Moreover,both full state feedback control and output feedbackcontrol are presented, and the unmeasurable velocities ofthe output feedback controller are estimated via a highgainobserver. Unlike the conventional control methods,we employ the error transformation function to guaranteethe transient tracking performance. Both simulation andexperimental results are carried out to validate the superiorperformance via comparing with traditional potential integral(PI) control approaches

    Adaptive finite-time control of multi-agent systems with partial state constraints and input saturation via event-triggered strategy

    Get PDF
    This paper focuses on the finite-time control problem of multi-agent systems with input saturation, unknown nonlinear dynamics, external disturbances and partial state constraints via output feedback. Fuzzy logic system and fuzzy state observer are introduced to approximate the uncertain nonlinearities and estimate the unmeasurable states, respectively. The partial state constraints are dealt with by using the barrier Lyapunov function, so that all states of the system do not exceed the preset boundary values. In order to reduce the computational complexity of the virtual controller and save communication resources, a first-order filter and an event-triggered mechanism are introduced, respectively. It is proved that the Zeno behavior does not occur via the proposed event-triggered controller. By stability analysis, the finite-time convergence of tracking error to a small neighborhood of the origin is proven. The effectiveness of the theoretical results is verified by examples.http://wileyonlinelibrary.com/iet-cthhj2023Electrical, Electronic and Computer Engineerin

    A Model-Based Coordinated Control Concept for Steam Power Plants

    Get PDF

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Model-data interaction in groundwater studies: Review of methods, applications and future directions

    Get PDF
    This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ which permits use, distribution and reproduction in any medium, provided the original work is properly cited. This author accepted manuscript is made available following 24 month embargo from date of publication (Sept 2018) in accordance with the publisher’s archiving policyWe define model-data interaction (MDI) as a two way process between models and data, in which on one hand data can serve the modeling purpose by supporting model discrimination, parameter refinement, uncertainty analysis, etc., and on the other hand models provide a tool for data fusion, interpretation, interpolation, etc. MDI has many applications in the realm of groundwater and has been the topic of extensive research in the groundwater community for the past several decades. This has led to the development of a multitude of increasingly sophisticated methods. The progress of data acquisition technologies and the evolution of models are continuously changing the landscape of groundwater MDI, creating new challenges and opportunities that must be properly understood and addressed. This paper aims to review, analyze and classify research on MDI in groundwater applications, and discusses several related aspects including: (1) basic theoretical concepts and classification of methods, (2) sources of uncertainty and how they are commonly addressed, (3) specific characteristics of groundwater models and data that affect the choice of methods, (4) how models and data can interact to provide added value in groundwater applications, (5) software and codes for MDI, and (6) key issues that will likely form future research directions. The review shows that there are many tools and techniques for groundwater MDI, and this diversity is needed to support different MDI objectives, assumptions, model and data types and computational constraints. The study identifies eight categories of applications for MDI in the groundwater literature, and highlights the growing gap between MDI practices in the research community and those in consulting, industry and government.Behzad Ataie-Ashtiani and Craig T. Simmons acknowledge support from the National Centre for Groundwater Research and Training, Australia. Behzad Ataie-Ashtiani also appreciates the support of the Research Office of the Sharif University of Technology, Iran
    • …
    corecore