158 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Robot Local Network Using TQS Protocol for Land-to-Underwater Communications, Journal of Telecommunications and Information Technology, 2019, nr 1

    Get PDF
    This paper presents a model and an analysis of the Tag QoS switching (TQS) protocol proposed for heterogeneous robots operating in different environments. Collaborative control is topic that is widely discussed in multirobot task allocation (MRTA) – an area which includes establishing network communication between each of the connected robots. Therefore, this research focuses on classifying, prioritizing and analyzing performance of the robot local network (RLN) model which comprises a point-to-point topology network between robot peers (nodes) in the air, on land, and under water. The proposed TQS protocol was inspired by multiprotocol label switching (MPLS), achieving a quality of service (QoS) where swapping and labeling operations involving the data packet header were applied. The OMNET++ discrete event simulator was used to analyze the percentage of losses, average access delay, and throughput of the transmitted data in different classes of service (CoS), in a line of transmission between underwater and land environments. The results show that inferior data transmission performance has the lowest priority with low bitrates and extremely high data packet loss rates when the network traffic was busy. On the other hand, simulation results for the highest CoS data forwarding show that its performance was not affected by different data transmission rates characterizing different mediums and environments

    A review on multi-robot systems categorised by application domain

    Get PDF
    Literature reviews on Multi-Robot Systems (MRS) typically focus on fundamental technical aspects, like coordination and communication, that need to be considered in order to coordinate a team of robots to perform a given task effectively and efficiently. Other reviews only consider works that aim to address a specific problem or one particular application of MRS. In contrast, this paper presents a survey of recent research works on MRS and categorises them according to their application domain. Furthermore, this paper compiles a number of seminal review works that have proposed specific taxonomies in classifying fundamental concepts, such as coordination, architecture and communication, in the field of MRS.peer-reviewe

    Task Allocation among Connected Devices: Requirements, Approaches and Challenges

    Get PDF
    Task allocation (TA) is essential when deploying application tasks to systems of connected devices with dissimilar and time-varying characteristics. The challenge of an efficient TA is to assign the tasks to the best devices, according to the context and task requirements. The main purpose of this paper is to study the different connotations of the concept of TA efficiency, and the key factors that most impact on it, so that relevant design guidelines can be defined. The paper first analyzes the domains of connected devices where TA has an important role, which brings to this classification: Internet of Things (IoT), Sensor and Actuator Networks (SAN), Multi-Robot Systems (MRS), Mobile Crowdsensing (MCS), and Unmanned Aerial Vehicles (UAV). The paper then demonstrates that the impact of the key factors on the domains actually affects the design choices of the state-of-the-art TA solutions. It results that resource management has most significantly driven the design of TA algorithms in all domains, especially IoT and SAN. The fulfillment of coverage requirements is important for the definition of TA solutions in MCS and UAV. Quality of Information requirements are mostly included in MCS TA strategies, similar to the design of appropriate incentives. The paper also discusses the issues that need to be addressed by future research activities, i.e.: allowing interoperability of platforms in the implementation of TA functionalities; introducing appropriate trust evaluation algorithms; extending the list of tasks performed by objects; designing TA strategies where network service providers have a role in TA functionalities’ provisioning

    Task Allocation Strategies in Multi-Robot Environment

    Get PDF
    Multirobot systems (MRS) hold the promise of improved performance and increased fault tolerance for large-scale problems. A robot team can accomplish a given task more quickly than a single agent by executing them concurrently. A team can also make effective use of specialists designed for a single purpose rather than requiring that a single robot be a generalist. Multirobot coordination, however, is a complex problem. An empirical study is described in the thesis that sought general guidelines for task allocation strategies. Different strategies are identified, and demonstrated in the multi-robot environment.Robot selection is one of the critical issues in the design of robotic workcells. Robot selection for an application is generally done based on experience, intuition and at most using the kinematic considerations like workspace, manipulability, etc. This problem has become more difficult in recent years due to increasing complexity, available features, and facilities offered by different robotic products. A systematic procedure is developed for selection of robot manipulators based on their different pertinent attributes. The robot selection procedure allows rapid convergence from a very large number of candidate robots to a manageable shortlist of potentially suitable robots. Subsequently, the selection procedure proceeds to rank the alternatives in the shortlist by employing different attributes based specification methods. This is an attempt to create exhaustive procedure by identifying maximum possible number of attributes for robot manipulators.Availability of large number of robot configurations has made the robot workcell designers think over the issue of selecting the most suitable one for a given set of operations. The process of selection of the appropriate kind of robot must consider the various attributes of the robot manipulator in conjunction with the requirement of the various operations for accomplishing the task. The present work is an attempt to develop a systematic procedure for selection of robot based on an integrated model encompassing the manipulator attributes and manipulator requirements

    Multi-robot preemptive task scheduling with fault recovery: a novel approach to automatic logistics of smart factories

    Get PDF
    This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that introduces priority policies on preemptive task scheduling and considers dependencies between tasks, and tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF). It considers the interaction between running processes and their tasks for management at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit of this approach is the optimization of production in smart factories, where autonomous robots are being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task preemption, and fault recovery is presented to show the benefits of the proposed approach.This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).info:eu-repo/semantics/publishedVersio

    Adaptive Group Formation in Multirobot Systems

    Get PDF

    Biologically Inspired Intelligence with Applications on Robot Navigation

    Get PDF
    Biologically inspired intelligence technique, an important embranchment of series on computational intelligence, plays a crucial role for robotics. The autonomous robot and vehicle industry has had an immense impact on our economy and society and this trend will continue with biologically inspired neural network techniques. In this chapter, multiple robots cooperate to achieve a common coverage goal efficiently, which can improve the work capacity, share the coverage tasks, and reduce the completion time by a biologically inspired intelligence technique, is addressed. In many real-world applications, the coverage task has to be completed without any prior knowledge of the environment. In this chapter, a neural dynamics approach is proposed for complete area coverage by multiple robots. A bio-inspired neural network is designed to model the dynamic environment and to guide a team of robots for the coverage task. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting neural equation. Each mobile robot treats the other robots as moving obstacles. Each robot path is autonomously generated from the dynamic activity landscape of the neural network and the previous robot position. The proposed model algorithm is computationally simple. The feasibility is validated by four simulation studies
    corecore