929 research outputs found

    Applying Spatial Diversity to Mitigate Partial Band Interference in Undersea Networks

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation and orthogonal frequency division multiplexing (OFDM) as background motivation to develop a spatial diversity receiver for use in underwater networks. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals as well as marine mammal vocalizations. In operational networks, many “dropped” messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation

    Narrowband Interference Suppression in Wireless OFDM Systems

    Full text link
    Signal distortions in communication systems occur between the transmitter and the receiver; these distortions normally cause bit errors at the receiver. In addition interference by other signals may add to the deterioration in performance of the communication link. In order to achieve reliable communication, the effects of the communication channel distortion and interfering signals must be reduced using different techniques. The aim of this paper is to introduce the fundamentals of Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA), to review and examine the effects of interference in a digital data communication link and to explore methods for mitigating or compensating for these effects

    Performance evaluation of interference cancellation techniques using adaptive antennas

    Get PDF
    Two array-based algorithms, which jointly exploit or compensate for the spatial and temporal characteristics of the propagation channel, are proposed for intercell interference suppression in UMTS scenarios. The first one is the array extension of the Viterbi algorithm and is referred to as Vector Viterbi algorithm (VVA). The second algorithm, known as filtered training sequence multisensor receiver (FTS-MR), belongs to a class of algorithms in which a narrowband beamformer is placed prior to the MLSE detector. In order to assess performance of the proposed schemes, a set of link-level computer simulations adopting FRAMES' proposal for UMTS air-interface as well as realistic channel models for third generation communication systems is provided, Simulation results reveal gains, in terms of C/I, of 7-10 dB for the VVA with respect to the conventional VA and even higher for the FTS-MR.Peer ReviewedPostprint (published version

    Review of active noise control techniques with emphasis on sound quality enhancement

    Get PDF
    The traditional active noise control design aims to attenuate the energy of residual noise, which is indiscriminative in the frequency domain. However, it is necessary to retain residual noise with a specified spectrum to satisfy the requirements of human perception in some applications. In this paper, the evolution of active noise control and sound quality are briefly discussed. This paper emphasizes on the advancement of active noise control method in the past decades in terms of enhancing the sound quality
    • …
    corecore