1,365 research outputs found

    Vehicle detection and tracking using homography-based plane rectification and particle filtering

    Get PDF
    This paper presents a full system for vehicle detection and tracking in non-stationary settings based on computer vision. The method proposed for vehicle detection exploits the geometrical relations between the elements in the scene so that moving objects (i.e., vehicles) can be detected by analyzing motion parallax. Namely, the homography of the road plane between successive images is computed. Most remarkably, a novel probabilistic framework based on Kalman filtering is presented for reliable and accurate homography estimation. The estimated homography is used for image alignment, which in turn allows to detect the moving vehicles in the image. Tracking of vehicles is performed on the basis of a multidimensional particle filter, which also manages the exit and entries of objects. The filter involves a mixture likelihood model that allows a better adaptation of the particles to the observed measurements. The system is specially designed for highway environments, where it has been proven to yield excellent results

    Robust automatic target tracking based on a Bayesian ego-motion compensation framework for airborne FLIR imagery

    Get PDF
    Automatic target tracking in airborne FLIR imagery is currently a challenge due to the camera ego-motion. This phenomenon distorts the spatio-temporal correlation of the video sequence, which dramatically reduces the tracking performance. Several works address this problem using ego-motion compensation strategies. They use a deterministic approach to compensate the camera motion assuming a specific model of geometric transformation. However, in real sequences a specific geometric transformation can not accurately describe the camera ego-motion for the whole sequence, and as consequence of this, the performance of the tracking stage can significantly decrease, even completely fail. The optimum transformation for each pair of consecutive frames depends on the relative depth of the elements that compose the scene, and their degree of texturization. In this work, a novel Particle Filter framework is proposed to efficiently manage several hypothesis of geometric transformations: Euclidean, affine, and projective. Each type of transformation is used to compute candidate locations of the object in the current frame. Then, each candidate is evaluated by the measurement model of the Particle Filter using the appearance information. This approach is able to adapt to different camera ego-motion conditions, and thus to satisfactorily perform the tracking. The proposed strategy has been tested on the AMCOM FLIR dataset, showing a high efficiency in the tracking of different types of targets in real working conditions

    Recursive Motion and Structure Estimation with Complete Error Characterization

    Get PDF
    We present an algorithm that perfom recursive estimation of ego-motion andambient structure from a stream of monocular Perspective images of a number of feature points. The algorithm is based on an Extended Kalman Filter (EKF) that integrates over time the instantaneous motion and structure measurements computed by a 2-perspective-views step. Key features of our filter are (I) global observability of the model, (2) complete on-line characterization of the uncertainty of the measurements provided by the two-views step. The filter is thus guaranteed to be well-behaved regardless of the particular motion undergone by the observel: Regions of motion space that do not allow recovery of structure (e.g. pure rotation) may be crossed while maintaining good estimates of structure and motion; whenever reliable measurements are available they are exploited. The algorithm works well for arbitrary motions with minimal smoothness assumptions and no ad hoc tuning. Simulations are presented that illustrate these characteristics

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing

    Vehicle Tracking and Motion Estimation Based on Stereo Vision Sequences

    Get PDF
    In this dissertation, a novel approach for estimating trajectories of road vehicles such as cars, vans, or motorbikes, based on stereo image sequences is presented. Moving objects are detected and reliably tracked in real-time from within a moving car. The resulting information on the pose and motion state of other moving objects with respect to the own vehicle is an essential basis for future driver assistance and safety systems, e.g., for collision prediction. The focus of this contribution is on oncoming traffic, while most existing work in the literature addresses tracking the lead vehicle. The overall approach is generic and scalable to a variety of traffic scenes including inner city, country road, and highway scenarios. A considerable part of this thesis addresses oncoming traffic at urban intersections. The parameters to be estimated include the 3D position and orientation of an object relative to the ego-vehicle, as well as the object's shape, dimension, velocity, acceleration and the rotational velocity (yaw rate). The key idea is to derive these parameters from a set of tracked 3D points on the object's surface, which are registered to a time-consistent object coordinate system, by means of an extended Kalman filter. Combining the rigid 3D point cloud model with the dynamic model of a vehicle is one main contribution of this thesis. Vehicle tracking at intersections requires covering a wide range of different object dynamics, since vehicles can turn quickly. Three different approaches for tracking objects during highly dynamic turn maneuvers up to extreme maneuvers such as skidding are presented and compared. These approaches allow for an online adaptation of the filter parameter values, overcoming manual parameter tuning depending on the dynamics of the tracked object in the scene. This is the second main contribution. Further issues include the introduction of two initialization methods, a robust outlier handling, a probabilistic approach for assigning new points to a tracked object, as well as mid-level fusion of the vision-based approach with a radar sensor. The overall system is systematically evaluated both on simulated and real-world data. The experimental results show the proposed system is able to accurately estimate the object pose and motion parameters in a variety of challenging situations, including night scenes, quick turn maneuvers, and partial occlusions. The limits of the system are also carefully investigated.In dieser Dissertation wird ein Ansatz zur Trajektorienschätzung von Straßenfahrzeugen (PKW, Lieferwagen, Motorräder,...) anhand von Stereo-Bildfolgen vorgestellt. Bewegte Objekte werden in Echtzeit aus einem fahrenden Auto heraus automatisch detektiert, vermessen und deren Bewegungszustand relativ zum eigenen Fahrzeug zuverlässig bestimmt. Die gewonnenen Informationen liefern einen entscheidenden Grundstein für zukünftige Fahrerassistenz- und Sicherheitssysteme im Automobilbereich, beispielsweise zur Kollisionsprädiktion. Während der Großteil der existierenden Literatur das Detektieren und Verfolgen vorausfahrender Fahrzeuge in Autobahnszenarien adressiert, setzt diese Arbeit einen Schwerpunkt auf den Gegenverkehr, speziell an städtischen Kreuzungen. Der Ansatz ist jedoch grundsätzlich generisch und skalierbar für eine Vielzahl an Verkehrssituationen (Innenstadt, Landstraße, Autobahn). Die zu schätzenden Parameter beinhalten die räumliche Lage des anderen Fahrzeugs relativ zum eigenen Fahrzeug, die Objekt-Geschwindigkeit und -Längsbeschleunigung, sowie die Rotationsgeschwindigkeit (Gierrate) des beobachteten Objektes. Zusätzlich werden die Objektabmaße sowie die Objektform rekonstruiert. Die Grundidee ist es, diese Parameter anhand der Transformation von beobachteten 3D Punkten, welche eine ortsfeste Position auf der Objektoberfläche besitzen, mittels eines rekursiven Schätzers (Kalman Filter) zu bestimmen. Ein wesentlicher Beitrag dieser Arbeit liegt in der Kombination des Starrkörpermodells der Punktewolke mit einem Fahrzeugbewegungsmodell. An Kreuzungen können sehr unterschiedliche Dynamiken auftreten, von einer Geradeausfahrt mit konstanter Geschwindigkeit bis hin zum raschen Abbiegen. Um eine manuelle Parameteradaption abhängig von der jeweiligen Szene zu vermeiden, werden drei verschiedene Ansätze zur automatisierten Anpassung der Filterparameter an die vorliegende Situation vorgestellt und verglichen. Dies stellt den zweiten Hauptbeitrag der Arbeit dar. Weitere wichtige Beiträge sind zwei alternative Initialisierungsmethoden, eine robuste Ausreißerbehandlung, ein probabilistischer Ansatz zur Zuordnung neuer Objektpunkte, sowie die Fusion des bildbasierten Verfahrens mit einem Radar-Sensor. Das Gesamtsystem wird im Rahmen dieser Arbeit systematisch anhand von simulierten und realen Straßenverkehrsszenen evaluiert. Die Ergebnisse zeigen, dass das vorgestellte Verfahren in der Lage ist, die unbekannten Objektparameter auch unter schwierigen Umgebungsbedingungen, beispielsweise bei Nacht, schnellen Abbiegemanövern oder unter Teilverdeckungen, sehr präzise zu schätzen. Die Grenzen des Systems werden ebenfalls sorgfältig untersucht

    Model-based estimation of off-highway road geometry using single-axis LADAR and inertial sensing

    Get PDF
    This paper applies some previously studied extended Kalman filter techniques for planar road geometry estimation to the domain of autonomous navigation of off-highway vehicles. In this work, a clothoid model of the road geometry is constructed and estimated recursively based on road features extracted from single-axis LADAR range measurements. We present a method for feature extraction of the road centerline in the image plane, and describe its application to recursive estimation of the road geometry. We analyze the performance of our method against simulated motion of varied road geometries and against closed-loop detection, tracking and following of desert roads. Our method accomodates full 6 DOF motion of the vehicle as it navigates, constructs consistent estimates of the road geometry with respect to a fixed global reference frame, and requires an estimate of the sensor pose for each range measurement

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world
    corecore