1,611 research outputs found

    Robust fractional-order fast terminal sliding mode control with fixed-time reaching law for high-performance nanopositioning

    Get PDF
    Open Access via the Wiley Agreement ACKNOWLEDGEMENTS This work is supported by the China Scholarship Council under Grant No. 201908410107 and by the National Natural Science Foundation of China under Grant No. 51505133. The authors also thank the anonymous reviewers for their insightful and constructive comments.Peer reviewedPublisher PD

    Adaptive fuzzy observer based hierarchical sliding mode control for uncertain 2D overhead cranes

    Full text link
    © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group. This paper proposes a new approach to robustly control a 2D under-actuated overhead crane system, where a payload is effectively transported to a destination in real time with small sway angles, given its inherent uncertainties such as actuator nonlinearities and external disturbances. The control law is proposed to be developed by the use of the robust hierarchical sliding mode control (HSMC) structure in which a second-level sliding surface is formulated by two first-level sliding surfaces drawn on both actuated and under-actuated outputs of the crane. The unknown and uncertain parameters of the proposed control scheme are then adaptively estimated by the fuzzy observer (FO), where the adaptation mechanism is derived from the Lyapunov theory. More importantly, stability of the proposed strategy is theoretically proved. Effectiveness of the proposed adaptive FO-based HSMC approach was extensively validated by implementing the algorithm in both synthetic simulations and real-life experiments, where the results obtained by our method are highly promising

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Velocity control of ROV using modified integral SMC with optimization tuning based on Lyapunov analysis

    Get PDF
    Remotely Operated Vehicle also known as ROV is a vehicle with high nonlinearity and uncertainty parameters that requires a robust control system to maintain stability. The nonlinearity and uncertainty of ROV are caused by underwater environmental conditions and by the movement of the vehicle. SMC is one of the control systems that can overcome nonlinearity and uncertainty with the given robust system. This work aims to control velocity of the vehicle with proposes the use of modified integral SMC compensate error in ROV and the use of particle swarm optimization (PSO) to optimize the adjustment of SMC parameters. The ROV used in this paper has a configuration of six thrusters with five DoF movements that can be controlled. Modified integral sliding mode is used to control all force direction to increase the convergence of speed error. Adjustment optimization techniques with PSO are used to determine four values of sliding control parameters for five DoF. Using Lyapunov stability approach control law of sliding mode is derived and its global stability proved mathematically. Simulation results are conducted to evaluate the effectiveness of Modified Integral SMC and compared with nonlinear control

    Output Feedback Fractional-Order Nonsingular Terminal Sliding Mode Control of Underwater Remotely Operated Vehicles

    Get PDF
    For the 4-DOF (degrees of freedom) trajectory tracking control problem of underwater remotely operated vehicles (ROVs) in the presence of model uncertainties and external disturbances, a novel output feedback fractional-order nonsingular terminal sliding mode control (FO-NTSMC) technique is introduced in light of the equivalent output injection sliding mode observer (SMO) and TSMC principle and fractional calculus technology. The equivalent output injection SMO is applied to reconstruct the full states in finite time. Meanwhile, the FO-NTSMC algorithm, based on a new proposed fractional-order switching manifold, is designed to stabilize the tracking error to equilibrium points in finite time. The corresponding stability analysis of the closed-loop system is presented using the fractional-order version of the Lyapunov stability theory. Comparative numerical simulation results are presented and analyzed to demonstrate the effectiveness of the proposed method. Finally, it is noteworthy that the proposed output feedback FO-NTSMC technique can be used to control a broad range of nonlinear second-order dynamical systems in finite time

    Development of Novel Compound Controllers to Reduce Chattering of Sliding Mode Control

    Get PDF
    The robotics and dynamic systems constantly encountered with disturbances such as micro electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the sliding mode controller is that it produces high-frequency control signals, which leads to chattering. The research objective is to reduce chattering, improve robustness, and increase trajectory tracking of SMC. In this research, we developed controllers for three different dynamic systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We proposed three sliding mode control methods such as robust sliding mode control (RSMC), new sliding mode control (NSMC), and fractional sliding mode control (FSMC). These controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The performance of the three proposed sliding mode controllers was compared with conventional sliding mode control (CSMC). The simulation results verified that FSMC exhibits better performance in chattering reduction, faster convergence, finite-time convergence, robustness, and trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of NSMC was compared with CSMC experimentally, which demonstrated better performance of the NSMC controller

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Integrated fault-tolerant control for a 3-DOF helicopter with actuator faults and saturation

    Get PDF
    © The Institution of Engineering and Technology 2017. This study proposes a fault estimation (FE)-based fault-tolerant control (FTC) strategy to maintain system reliability and achieve desirable control performance for a 3-DOF helicopter system with both actuator drift and oscillation faults and saturation. The effects of the faults and saturation are combined into a composite non-differentiable actuator fault function, which is approximated by a differentiable function and estimated together with the system state using a non-linear unknown input observer. An adaptive sliding mode controller based on the estimates is developed to compensate the effects of the faults and saturation. Taking into account the bi-directional robustness interactions between the FE and FTC functions, an integrated design approach is proposed to obtain the observer and controller gains in a single step, so as to achieve robust overall FTC system performance. In fault-free cases, the proposed strategy can be considered as a new approach for anti-windup control to compensate the effect of input saturation. Comparative simulations are provided to verify the effectiveness of the proposed design under different actuator fault scenarios

    Integral sliding mode control with integral switching gain for magnetic levitation apparatus

    Get PDF
    Author name used in this publication: Norbert C. CheungRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Adaptive Fractional-Order Sliding Mode Controller with Neural Network Compensator for an Ultrasonic Motor

    Full text link
    Ultrasonic motors (USMs) are commonly used in aerospace, robotics, and medical devices, where fast and precise motion is needed. Remarkably, sliding mode controller (SMC) is an effective controller to achieve precision motion control of the USMs. To improve the tracking accuracy and lower the chattering in the SMC, the fractional-order calculus is introduced in the design of an adaptive SMC in this paper, namely, adaptive fractional-order SMC (AFOSMC), in which the bound of the uncertainty existing in the USMs is estimated by a designed adaptive law. Additionally, a short memory principle is employed to overcome the difficulty of implementing the fractional-order calculus on a practical system in real-time. Here, the short memory principle may increase the tracking errors because some information is lost during its operation. Thus, a compensator according to the framework of Bellman's optimal control theory is proposed so that the residual errors caused by the short memory principle can be attenuated. Lastly, experiments on a USM are conducted, which comparative results verify the performance of the designed controller.Comment: 9 pages, 9 figure
    corecore