4,721 research outputs found

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Rotorcraft flight-propulsion control integration: An eclectic design concept

    Get PDF
    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented

    Self-Learning Hot Data Prediction: Where Echo State Network Meets NAND Flash Memories

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Well understanding the access behavior of hot data is significant for NAND flash memory due to its crucial impact on the efficiency of garbage collection (GC) and wear leveling (WL), which respectively dominate the performance and life span of SSD. Generally, both GC and WL rely greatly on the recognition accuracy of hot data identification (HDI). However, in this paper, the first time we propose a novel concept of hot data prediction (HDP), where the conventional HDI becomes unnecessary. First, we develop a hybrid optimized echo state network (HOESN), where sufficiently unbiased and continuously shrunk output weights are learnt by a sparse regression based on L2 and L1/2 regularization. Second, quantum-behaved particle swarm optimization (QPSO) is employed to compute reservoir parameters (i.e., global scaling factor, reservoir size, scaling coefficient and sparsity degree) for further improving prediction accuracy and reliability. Third, in the test on a chaotic benchmark (Rossler), the HOESN performs better than those of six recent state-of-the-art methods. Finally, simulation results about six typical metrics tested on five real disk workloads and on-chip experiment outcomes verified from an actual SSD prototype indicate that our HOESN-based HDP can reliably promote the access performance and endurance of NAND flash memories.Peer reviewe

    Rotorcraft flight-propulsion control integration

    Get PDF
    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories have initiated and completed, in part, a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the T700 and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Statistical Multiplexing and Traffic Shaping Games for Network Slicing

    Full text link
    Next generation wireless architectures are expected to enable slices of shared wireless infrastructure which are customized to specific mobile operators/services. Given infrastructure costs and the stochastic nature of mobile services' spatial loads, it is highly desirable to achieve efficient statistical multiplexing amongst such slices. We study a simple dynamic resource sharing policy which allocates a 'share' of a pool of (distributed) resources to each slice-Share Constrained Proportionally Fair (SCPF). We give a characterization of SCPF's performance gains over static slicing and general processor sharing. We show that higher gains are obtained when a slice's spatial load is more 'imbalanced' than, and/or 'orthogonal' to, the aggregate network load, and that the overall gain across slices is positive. We then address the associated dimensioning problem. Under SCPF, traditional network dimensioning translates to a coupled share dimensioning problem, which characterizes the existence of a feasible share allocation given slices' expected loads and performance requirements. We provide a solution to robust share dimensioning for SCPF-based network slicing. Slices may wish to unilaterally manage their users' performance via admission control which maximizes their carried loads subject to performance requirements. We show this can be modeled as a 'traffic shaping' game with an achievable Nash equilibrium. Under high loads, the equilibrium is explicitly characterized, as are the gains in the carried load under SCPF vs. static slicing. Detailed simulations of a wireless infrastructure supporting multiple slices with heterogeneous mobile loads show the fidelity of our models and range of validity of our high load equilibrium analysis

    An Introduction to Control and Scheduling Co-Design

    Get PDF
    The paper presents the emerging field of integrated control and CPU-time scheduling, where more general scheduling models and methods that better suit the needs of control systems are developed. This creates possibilities for dynamic and flexible integrated control and scheduling frameworks, where the control design methodology takes the availability of computing resources into account during design and allows on-line trade-offs between control performance and computing resource utilization
    • …
    corecore