8,954 research outputs found

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Nonlinear and adaptive control

    Get PDF
    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    The economic basis of periodic enzyme dynamics

    Full text link
    Periodic enzyme activities can improve the metabolic performance of cells. As an adaptation to periodic environments or by driving metabolic cycles that can shift fluxes and rearrange metabolic processes in time to increase their efficiency. To study what benefits can ensue from rhythmic gene expression or posttranslational modification of enzymes, I propose a theory of optimal enzyme rhythms in periodic or static environments. The theory is based on kinetic metabolic models with predefined metabolic objectives, scores the effects of harmonic enzyme oscillations, and determines amplitudes and phase shifts that maximise cell fitness. In an expansion around optimal steady states, the optimal enzyme profiles can be computed by solving a quadratic optimality problem. The formulae show how enzymes can increase their efficiency by oscillating in phase with their substrates and how cells can benefit from adapting to external rhythms and from spontaneous, intrinsic enzyme rhythms. Both types of behaviour may occur different parameter regions of the same model. Optimal enzyme profiles are not passively adapted to existing substrate rhythms, but shape them actively to create opportunities for further fitness advantage: in doing so, they reflect the dynamic effects that enzymes can exert in the network. The proposed theory combines the dynamics and economics of metabolic systems and shows how optimal enzyme profiles are shaped by network structure, dynamics, external rhythms, and metabolic objectives. It covers static enzyme adaptation as a special case, reveals the conditions for beneficial metabolic cycles, and predicts optimally combinations of gene expression and posttranslational modification for creating enzyme rhythms

    Tracking system study

    Get PDF
    A digital computer program was generated which mathematically describes an optimal estimator-controller technique as applied to the control of antenna tracking systems used by NASA. Simulation studies utilizing this program were conducted using the IBM 360/91 computer. The basic ideas of applying optimal estimator-controller techniques to antenna tracking systems are discussed. A survey of existing tracking methods is given along with shortcomings and inherent errors. It is explained how these errors can be considerably reduced if optimal estimation and control are used. The modified programs generated in this project are described and the simulation results are summarized. The new algorithms for direct synthesis and stabilization of the systems including nonlinearities, are presented

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems
    • …
    corecore