2,865 research outputs found

    Multi-dimensional data indexing and range query processing via Voronoi diagram for internet of things

    Get PDF
    In a typical Internet of Things (IoT) deployment such as smart cities and Industry 4.0, the amount of sensory data collected from physical world is significant and wide-ranging. Processing large amount of real-time data from the diverse IoT devices is challenging. For example, in IoT environment, wireless sensor networks (WSN) are typically used for the monitoring and collecting of data in some geographic area. Spatial range queries with location constraints to facilitate data indexing are traditionally employed in such applications, which allows the querying and managing the data based on SQL structure. One particular challenge is to minimize communication cost and storage requirements in multi-dimensional data indexing approaches. In this paper, we present an energy- and time-efficient multidimensional data indexing scheme, which is designed to answer range query. Specifically, we propose data indexing methods which utilize hierarchical indexing structures, using binary space partitioning (BSP), such as kd-tree, quad-tree, k-means clustering, and Voronoi-based methods to provide more efficient routing with less latency. Simulation results demonstrate that the Voronoi Diagram-based algorithm minimizes the average energy consumption and query response time

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Exploiting Information-centric Networking to Federate Spatial Databases

    Full text link
    This paper explores the methodologies, challenges, and expected advantages related to the use of the information-centric network (ICN) technology for federating spatial databases. ICN services allow simplifying the design of federation procedures, improving their performance, and providing so-called data-centric security. In this work, we present an architecture that is able to federate spatial databases and evaluate its performance using a real data set coming from OpenStreetMap within a heterogeneous federation formed by MongoDB and CouchBase spatial database systems

    DRSP : Dimension Reduction For Similarity Matching And Pruning Of Time Series Data Streams

    Get PDF
    Similarity matching and join of time series data streams has gained a lot of relevance in today's world that has large streaming data. This process finds wide scale application in the areas of location tracking, sensor networks, object positioning and monitoring to name a few. However, as the size of the data stream increases, the cost involved to retain all the data in order to aid the process of similarity matching also increases. We develop a novel framework to addresses the following objectives. Firstly, Dimension reduction is performed in the preprocessing stage, where large stream data is segmented and reduced into a compact representation such that it retains all the crucial information by a technique called Multi-level Segment Means (MSM). This reduces the space complexity associated with the storage of large time-series data streams. Secondly, it incorporates effective Similarity Matching technique to analyze if the new data objects are symmetric to the existing data stream. And finally, the Pruning Technique that filters out the pseudo data object pairs and join only the relevant pairs. The computational cost for MSM is O(l*ni) and the cost for pruning is O(DRF*wsize*d), where DRF is the Dimension Reduction Factor. We have performed exhaustive experimental trials to show that the proposed framework is both efficient and competent in comparison with earlier works.Comment: 20 pages,8 figures, 6 Table

    On the analysis of big data indexing execution strategies

    No full text
    Efficient response to search queries is very crucial for data analysts to obtain timely results from big data spanned over heterogeneous machines. Currently, a number of big-data processing frameworks are available in which search operations are performed in distributed and parallel manner. However, implementation of indexing mechanism results in noticeable reduction of overall query processing time. There is an urge to assess the feasibility and impact of indexing towards query execution performance. This paper investigates the performance of state-of-the-art clustered indexing approaches over Hadoop framework which is de facto standard for big data processing. Moreover, this study leverages a comparative analysis of non-clustered indexing overhead in terms of time and space taken by indexing process for varying volume data sets with increasing Index Hit Ratio. Furthermore, the experiments evaluate performance of search operations in terms of data access and retrieval time for queries that use indexes. We then validated the obtained results using Petri net mathematical modeling. We used multiple data sets in our experiments to manifest the impact of growing volume of data on indexing and data search and retrieval performance. The results and highlighted challenges favorably lead researchers towards improved implication of indexing mechanism in perspective of data retrieval from big data. Additionally, this study advocates selection of a non-clustered indexing solution so that optimized search performance over big data is obtained

    An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Get PDF
    In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors' temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time
    • …
    corecore