18 research outputs found

    Comparative analysis of spatial and transform domain methods for meningioma subtype classification

    Get PDF
    Pattern recognition in histopathological image analysis requires new techniques and methods. Various techniques have been presented and some state of the art techniques have been applied to complex textural data in histological images. In this paper, we compare the novel Adaptive Discriminant Wavelet Packet Transform (ADWPT) with a few prominent techniques in texture analysis namely Local Binary Patterns (LBP), Grey Level Co-occurrence Matrices (GLCMs) and Gabor Transforms. We show that ADWPT is a better technique for Meningioma subtype classification and produces classification accuracies of as high as 90%

    A robust adaptive wavelet-based method for classification of meningioma histology images

    Get PDF
    Intra-class variability in the texture of samples is an important problem in the domain of histological image classification. This issue is inherent to the field due to the high complexity of histology image data. A technique that provides good results in one trial may fail in another when the test and training data are changed and therefore, the technique needs to be adapted for intra-class texture variation. In this paper, we present a novel wavelet based multiresolution analysis approach to meningioma subtype classification in response to the challenge of data variation.We analyze the stability of Adaptive Discriminant Wavelet Packet Transform (ADWPT) and present a solution to the issue of variation in the ADWPT decomposition when texture in data changes. A feature selection approach is proposed that provides high classification accuracy

    Meningioma classification using an adaptive discriminant wavelet packet transform

    Get PDF
    Meningioma subtypes classification is a real world problem from the domain of histological image analysis that requires new methods for its resolution. Computerised histopathology presents a whole new set of problems and introduces new challenges in image classification. High intra-class variation and low inter-class differences in textures is often an issue in histological image analysis problems such as Meningioma subtypes classification. In this thesis, we present an adaptive wavelets based technique that adapts to the variation in the texture of meningioma samples and provides high classification accuracy results. The technique provides a mechanism for attaining an image representation consisting of various spatial frequency resolutions that represent the image and are referred to as subbands. Each subband provides different information pertaining to the texture in the image sample. Our novel method, the Adaptive Discriminant Wavelet Packet Transform (ADWPT), provides a means for selecting the most useful subbands and hence, achieves feature selection. It also provides a mechanism for ranking features based upon the discrimination power of a subband. The more discriminant a subband, the better it is for classification. The results show that high classification accuracies are obtained by selecting subbands with high discrimination power. Moreover, subbands that are more stable i.e. have a higher probability of being selected provide better classification accuracies. Stability and discrimination power have been shown to have a direct relationship with classification accuracy. Hence, ADWPT acquires a subset of subbands that provide a highly discriminant and robust set of features for Meningioma subtype classification. Classification accuracies obtained are greater than 90% for most Meningioma subtypes. Consequently, ADWPT is a robust and adaptive technique which enables it to overcome the issue of high intra-class variation by statistically selecting the most useful subbands for meningioma subtype classification. It overcomes the issue of low inter-class variation by adapting to texture samples and extracting the subbands that are best for differentiating between the various meningioma subtype textures

    A fractal dimension based optimal wavelet packet analysis technique for classification of meningioma brain tumours

    Get PDF
    With the heterogeneous nature of tissue texture, using a single resolution approach for optimum classification might not suffice. In contrast, a multiresolution wavelet packet analysis can decompose the input signal into a set of frequency subbands giving the opportunity to characterise the texture at the appropriate frequency channel. An adaptive best bases algorithm for optimal bases selection for meningioma histopathological images is proposed, via applying the fractal dimension (FD) as the bases selection criterion in a tree-structured manner. Thereby, the most significant subband that better identifies texture discontinuities will only be chosen for further decomposition, and its fractal signature would represent the extracted feature vector for classification. The best basis selection using the FD outperformed the energy based selection approaches, achieving an overall classification accuracy of 91.25% as compared to 83.44% and 73.75% for the co-occurrence matrix and energy texture signatures; respectively

    The Classification of Meningioma Subtypes Based on the Color Segmentation and Shape Features

    Full text link

    Tumour grading and discrimination based on class assignment and quantitative texture analysis techniques

    Get PDF
    Medical imaging represents the utilisation of technology in biology for the purpose of noninvasively revealing the internal structure of the organs of the human body. It is a way to improve the quality of the patient's life through a more precise and rapid diagnosis, and with limited side-effects, leading to an effective overall treatment procedure. The main objective of this thesis is to propose novel tumour discrimination techniques that cover both micro and macro-scale textures encountered in computed tomography (CI') and digital microscopy (DM) modalities, respectively. Image texture can provide significant information on the (ab)normality of tissue, and this thesis expands this idea to tumour texture grading and classification. The fractal dimension (FO) as a texture measure was applied to contrast enhanced CT lung tumour images in an aim to improve tumour grading accuracy from conventional CI' modality, and quantitative performance analysis showed an accuracy of 83.30% in distinguishing between advanced (aggressive) and early stage (non-aggressive) malignant tumours. A different approach was adopted for subtype discrimination of brain tumour OM images via a set of statistical and model-based texture analysis algorithms. The combined Gaussian Markov random field and run-length matrix texture measures outperformed all other combinations, achieving an overall class assignment classification accuracy of 92.50%. Also two new histopathological multi resolution approaches based on applying the FO as the best bases selection for discrete wavelet packet transform, and when fused with the Gabor filters' energy output improved the accuracy to 91.25% and 95.00%, respectively. While noise is quite common in all medical imaging modalities, the impact of noise on the applied texture measures was assessed as well. The developed lung and brain texture analysis techniques can improve the physician's ability to detect and analyse pathologies leading for a more reliable diagnosis and treatment of disease

    Improving Iris Recognition Performance Using Quality Measures

    Get PDF

    Radon Projections as Image Descriptors for Content-Based Retrieval of Medical Images

    Get PDF
    Clinical analysis and medical diagnosis of diverse diseases adopt medical imaging techniques to empower specialists to perform their tasks by visualizing internal body organs and tissues for classifying and treating diseases at an early stage. Content-Based Image Retrieval (CBIR) systems are a set of computer vision techniques to retrieve similar images from a large database based on proper image representations. Particularly in radiology and histopathology, CBIR is a promising approach to effectively screen, understand, and retrieve images with similar level of semantic descriptions from a database of previously diagnosed cases to provide physicians with reliable assistance for diagnosis, treatment planning and research. Over the past decade, the development of CBIR systems in medical imaging has expedited due to the increase in digitized modalities, an increase in computational efficiency (e.g., availability of GPUs), and progress in algorithm development in computer vision and artificial intelligence. Hence, medical specialists may use CBIR prototypes to query similar cases from a large image database based solely on the image content (and no text). Understanding the semantics of an image requires an expressive descriptor that has the ability to capture and to represent unique and invariant features of an image. Radon transform, one of the oldest techniques widely used in medical imaging, can capture the shape of organs in form of a one-dimensional histogram by projecting parallel rays through a two-dimensional object of concern at a specific angle. In this work, the Radon transform is re-designed to (i) extract features and (ii) generate a descriptor for content-based retrieval of medical images. Radon transform is applied to feed a deep neural network instead of raw images in order to improve the generalization of the network. Specifically, the framework is composed of providing Radon projections of an image to a deep autoencoder, from which the deepest layer is isolated and fed into a multi-layer perceptron for classification. This approach enables the network to (a) train much faster as the Radon projections are computationally inexpensive compared to raw input images, and (b) perform more accurately as Radon projections can make more pronounced and salient features to the network compared to raw images. This framework is validated on a publicly available radiography data set called "Image Retrieval in Medical Applications" (IRMA), consisting of 12,677 train and 1,733 test images, for which an classification accuracy of approximately 82% is achieved, outperforming all autoencoder strategies reported on the Image Retrieval in Medical Applications (IRMA) dataset. The classification accuracy is calculated by dividing the total IRMA error, a calculation outlined by the authors of the data set, with the total number of test images. Finally, a compact handcrafted image descriptor based on Radon transform was designed in this work that is called "Forming Local Intersections of Projections" (FLIP). The FLIP descriptor has been designed, through numerous experiments, for representing histopathology images. The FLIP descriptor is based on Radon transform wherein parallel projections are applied in a local 3x3 neighborhoods with 2 pixel overlap of gray-level images (staining of histopathology images is ignored). Using four equidistant projection directions in each window, the characteristics of the neighborhood is quantified by taking an element-wise minimum between each adjacent projection in each window. Thereafter, the FLIP histogram (descriptor) for each image is constructed. A multi-resolution FLIP (mFLIP) scheme is also proposed which is observed to outperform many state-of-the-art methods, among others deep features, when applied on the histopathology data set KIMIA Path24. Experiments show a total classification accuracy of approximately 72% using SVM classification, which surpasses the current benchmark of approximately 66% on the KIMIA Path24 data set
    corecore