1,144 research outputs found

    MVG Mechanism: Differential Privacy under Matrix-Valued Query

    Full text link
    Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. To address this challenge, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution, and we rigorously prove that the MVG mechanism preserves (ϵ,δ)(\epsilon,\delta)-differential privacy. Furthermore, we introduce the concept of directional noise made possible by the design of the MVG mechanism. Directional noise allows the impact of the noise on the utility of the matrix-valued query function to be moderated. Finally, we experimentally demonstrate the performance of our mechanism using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline.Comment: Appeared in CCS'1

    SoK: Chasing Accuracy and Privacy, and Catching Both in Differentially Private Histogram Publication

    Get PDF
    Histograms and synthetic data are of key importance in data analysis. However, researchers have shown that even aggregated data such as histograms, containing no obvious sensitive attributes, can result in privacy leakage. To enable data analysis, a strong notion of privacy is required to avoid risking unintended privacy violations.Such a strong notion of privacy is differential privacy, a statistical notion of privacy that makes privacy leakage quantifiable. The caveat regarding differential privacy is that while it has strong guarantees for privacy, privacy comes at a cost of accuracy. Despite this trade-off being a central and important issue in the adoption of differential privacy, there exists a gap in the literature regarding providing an understanding of the trade-off and how to address it appropriately. Through a systematic literature review (SLR), we investigate the state-of-the-art within accuracy improving differentially private algorithms for histogram and synthetic data publishing. Our contribution is two-fold: 1) we identify trends and connections in the contributions to the field of differential privacy for histograms and synthetic data and 2) we provide an understanding of the privacy/accuracy trade-off challenge by crystallizing different dimensions to accuracy improvement. Accordingly, we position and visualize the ideas in relation to each other and external work, and deconstruct each algorithm to examine the building blocks separately with the aim of pinpointing which dimension of accuracy improvement each technique/approach is targeting. Hence, this systematization of knowledge (SoK) provides an understanding of in which dimensions and how accuracy improvement can be pursued without sacrificing privacy
    • …
    corecore