3,530 research outputs found

    A general framework of multi-population methods with clustering in undetectable dynamic environments

    Get PDF
    Copyright @ 2011 IEEETo solve dynamic optimization problems, multiple population methods are used to enhance the population diversity for an algorithm with the aim of maintaining multiple populations in different sub-areas in the fitness landscape. Many experimental studies have shown that locating and tracking multiple relatively good optima rather than a single global optimum is an effective idea in dynamic environments. However, several challenges need to be addressed when multi-population methods are applied, e.g., how to create multiple populations, how to maintain them in different sub-areas, and how to deal with the situation where changes can not be detected or predicted. To address these issues, this paper investigates a hierarchical clustering method to locate and track multiple optima for dynamic optimization problems. To deal with undetectable dynamic environments, this paper applies the random immigrants method without change detection based on a mechanism that can automatically reduce redundant individuals in the search space throughout the run. These methods are implemented into several research areas, including particle swarm optimization, genetic algorithm, and differential evolution. An experimental study is conducted based on the moving peaks benchmark to test the performance with several other algorithms from the literature. The experimental results show the efficiency of the clustering method for locating and tracking multiple optima in comparison with other algorithms based on multi-population methods on the moving peaks benchmark

    A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

    Full text link
    Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure

    Benchmarking Continuous Dynamic Optimization: Survey and Generalized Test Suite

    Get PDF
    Dynamic changes are an important and inescapable aspect of many real-world optimization problems. Designing algorithms to find and track desirable solutions while facing challenges of dynamic optimization problems is an active research topic in the field of swarm and evolutionary computation. To evaluate and compare the performance of algorithms, it is imperative to use a suitable benchmark that generates problem instances with different controllable characteristics. In this paper, we give a comprehensive review of existing benchmarks and investigate their shortcomings in capturing different problem features. We then propose a highly configurable benchmark suite, the generalized moving peaks benchmark, capable of generating problem instances whose components have a variety of properties such as different levels of ill-conditioning, variable interactions, shape, and complexity. Moreover, components generated by the proposed benchmark can be highly dynamic with respect to the gradients, heights, optimum locations, condition numbers, shapes, complexities, and variable interactions. Finally, several well-known optimizers and dynamic optimization algorithms are chosen to solve generated problems by the proposed benchmark. The experimental results show the poor performance of the existing methods in facing new challenges posed by the addition of new properties

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Robust Estimation of Distribution Algorithms via Fitness Landscape Analysis for Optimal Low-Thrust Orbital Maneuvers

    Get PDF
    One particular kind of evolutionary algorithms known as Estimation of Distribution Algorithms (EDAs) has gained the attention of the aerospace industry for its ability to solve nonlinear and complicated problems, particularly in the optimization of space trajectories during on-orbit operations of satellites. This article describes an effective method for optimizing the trajectory of a spacecraft using an evolutionary approach based on EDAs, incorporated with fitness landscape analysis (FLA). The approach utilizes flexible operators that are paired with seeding and selection mechanisms of EDAs. Initially, the orbit transfer problem is mathematically modeled and the objectives and constraints are identified. The landscape feature of the search space is analyzed via the dispersion metric to measure the modality and ruggedness of the search domain. The obtained information are used as feedback in developing adaptive operators for truncation factor and constraints separation threshold of the employed EDA. A framework for spacecraft trajectory optimization has been presented where the dispersion value for a space mission is estimated using a k-nearest neighbors (k-NN) algorithm. The suggested method is used to solve several problems related to low-thrust orbit transfer of satellites in Earth’s orbit. Results demonstrate that the suggested framework for trajectory design and optimization of space transfers is effective enough to offer fuel-efficient and energy-efficient maneuvers for different thrust levels of the propulsion system. Moreover, the performance of the proposed approach is evaluated against non-adaptive EDA and other advanced evolutionary algorithms. The obtained results certify that the proposed adaptive evolutionary approach is superior in identifying feasible minimum-fuel and minimum-energy transfer trajectories.BEAZ Bizkaia, 3/12/DP/2021/00150; SPRI Group, Ekintzaile Program EK-00112-202

    Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Many real-world applications can be modelled as dynamic constrained optimization problems (DCOPs). Due to the fact that objective function and/or constraints change over time, solving DCOPs is a challenging task. Although solving DCOPs by evolutionary algorithms has attracted increasing interest in the community of evolutionary computation, the design of benchmark test functions of DCOPs is still insufficient. Therefore, we propose a test suite for DCOPs. A dynamic unconstrained optimization benchmark with good time-varying characteristics, called moving peaks benchmark, is chosen to be the objective function of our test suite. In addition, we design adjustable dynamic constraints, by which the size, number, and change severity of the feasible regions can be flexibly controlled. Furthermore, the performance of three dynamic constrained optimization evolutionary algorithms is tested on the proposed test suite, one of which is presented in this paper, named dynamic constrained optimization differential evolution (DyCODE). DyCODE includes three main phases: 1) the first phase intends to enter the feasible region from different directions promptly via a multi-population search strategy; 2) in the second phase, some excellent individuals chosen from the first phase form a new population to search for the optimal solution of the current environment; and 3) the third phase combines the memory individuals of the first two phases with some randomly generated individuals to re-initialize the population for the next environment. From the experiments, one can understand the strengths and weaknesses of the three compared algorithms for solving DCOPs in depth. Moreover, we also give some suggestions for researchers to apply these three algorithms on different occasions

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    corecore