304,210 research outputs found

    Adaptive Performance and Power Management in Distributed Computing Systems

    Get PDF
    The complexity of distributed computing systems has raised two unprecedented challenges for system management. First, various customers need to be assured by meeting their required service-level agreements such as response time and throughput. Second, system power consumption must be controlled in order to avoid system failures caused by power capacity overload or system overheating due to increasingly high server density. However, most existing work, unfortunately, either relies on open-loop estimations based on off-line profiled system models, or evolves in a more ad hoc fashion, which requires exhaustive iterations of tuning and testing, or oversimplifies the problem by ignoring the coupling between different system characteristics (\ie, response time and throughput, power consumption of different servers). As a result, the majority of previous work lacks rigorous guarantees on the performance and power consumption for computing systems, and may result in degraded overall system performance. In this thesis, we extensively study adaptive performance/power management and power-efficient performance management for distributed computing systems such as information dissemination systems, power grid management systems, and data centers, by proposing Multiple-Input-Multiple-Output (MIMO) control and hierarchical designs based on feedback control theory. For adaptive performance management, we design an integrated solution that controls both the average response time and CPU utilization in information dissemination systems to achieve bounded response time for high-priority information and maximized system throughput in an example information dissemination system. In addition, we design a hierarchical control solution to guarantee the deadlines of real-time tasks in power grid computing by grouping them based on their characteristics, respectively. For adaptive power management, we design MIMO optimal control solutions for power control at the cluster and server level and a hierarchical solution for large-scale data centers. Our MIMO control design can capture the coupling among different system characteristics, while our hierarchical design can coordinate controllers at different levels. For power-efficient performance management, we discuss a two-layer coordinated management solution for virtualized data centers. Experimental results in both physical testbeds and simulations demonstrate that all the solutions outperform state-of-the-art management schemes by significantly improving overall system performance

    Biologically Motivated Distributed Designs for Adaptive Knowledge Management

    Full text link
    We discuss how distributed designs that draw from biological network metaphors can largely improve the current state of information retrieval and knowledge management of distributed information systems. In particular, two adaptive recommendation systems named TalkMine and @ApWeb are discussed in more detail. TalkMine operates at the semantic level of keywords. It leads different databases to learn new and adapt existing keywords to the categories recognized by its communities of users using distributed algorithms. @ApWeb operates at the structural level of information resources, namely citation or hyperlink structure. It relies on collective behavior to adapt such structure to the expectations of users. TalkMine and @ApWeb are currently being implemented for the research library of the Los Alamos National Laboratory under the Active Recommendation Project. Together they define a biologically motivated information retrieval system, recommending simultaneously at the level of user knowledge categories expressed in keywords, and at the level of individual documents and their associations to other documents. Rather than passive information retrieval, with this system, users obtain an active, evolving interaction with information resources.Comment: To appear in Design Principles for the Immune System and Other Distributed Autonomous Systems. i. Cohen and L. Segel (Eds.). Oxford University Pres

    Reconfiguration patterns for Goal-Oriented Monitoring Adaptation

    Get PDF
    International audienceThis paper argues that autonomic systems need to make their distributed monitoring adaptive in order to improve their “comprehensive” resulting quality; that means both the Quality of Service (QoS), and the Quality of Information (QoI). In a previous work, we proposed a methodology to design monitoring adaptation based on high level objectives related to the management of quality requirements. One of the advantages of adopting a methodological approach is that monitoring reconfiguration will be conducted through a consistent adaptation logic. However, eliciting the appropriate quality goals remains an area to be investigated. In this paper, we tackle this issue by proposing some monitoring adaptation patterns falling into reconfiguration dimensions. Those patterns aim at facilitating the adaptation design of monitoring behavior of the whole set of distributed monitoring modules part of autonomic systems. The utility of those patterns is illustrated through a case-study dealing with monitoring adaptation based on high level quality objectives

    ART Neural Networks: Distributed Coding and ARTMAP Applications

    Full text link
    ART (Adaptive Resonance Theory) neural networks for fast, stable learning and prediction have been applied in a variety of areas. Applications include airplane design and manufacturing, automatic target recognition, financial forecasting, machine tool monitoring, digital circuit design, chemical analysis, and robot vision. Supervised ART architectures, called ARTMAP systems, feature internal control mechanisms that create stable recognition categories of optimal size by maximizing code compression while minimizing predictive error in an on-line setting. Special-purpose requirements of various application domains have led to a number of ARTMAP variants, including fuzzy ARTMAP, ART-EMAP, Gaussian ARTMAP, and distributed ARTMAP. ARTMAP has been used for a variety of applications, including computer-assisted medical diagnosis. Medical databases present many of the challenges found in general information management settings where speed, efficiency, ease of use, and accuracy are at a premium. A direct goal of improved computer-assisted medicine is to help deliver quality emergency care in situations that may be less than ideal. Working with these problems has stimulated a number of ART architecture developments, including ARTMAP-IC [1]. This paper describes a recent collaborative effort, using a new cardiac care database for system development, has brought together medical statisticians and clinicians at the New England Medical Center with researchers developing expert systems and neural networks, in order to create a hybrid method for medical diagnosis. The paper also considers new neural network architectures, including distributed ART {dART), a real-time model of parallel distributed pattern learning that permits fast as well as slow adaptation, without catastrophic forgetting. Local synaptic computations in the dART model quantitatively match the paradoxical phenomenon of Markram-Tsodyks [2] redistribution of synaptic efficacy, as a consequence of global system hypotheses.Office of Naval Research (N00014-95-1-0409, N00014-95-1-0657

    Goal-Oriented Monitoring Adaptation : methodology and patterns

    Get PDF
    International audienceThis paper argues that autonomic systems need to make their distributed monitoring adaptive in order to improve their “comprehensive” resulting quality; that means both the Quality of Service (QoS), and the Quality of Information (QoI). Thus, we propose a methodology to design monitoring adaptation based on high level objectives (goals) related to the management of quality requirements. One of the advantages of adopting a methodological approach, is that monitoring reconfiguration will be conducted through a consistent adaptation logic. Starting from a model-guided monitoring framework, we introduce our methodology to assist human administrators in eliciting the appropriate quality goals piloting the monitoring. Moreover, some monitoring adaptation patterns falling into reconfiguration dimensions are suggested and exploited in a cloud provider case-study illustrating the adaptation of Quality-Oriented monitoring

    Resilient DC LV communities – UPB demonstrator

    Get PDF
    This work presents the architecture and operational features of a demonstrator developed at the premises of MicroDERLab Research Group at UPB that consists of two interconnected DC low voltage microgrids aiming to serve several research projects that focus on resilient DC LV communities. The architecture of the demonstrator uses a case-driven approach to validate and demonstrate the toolkits to be developed. Concretely, the demonstrator aims to facilitate the experimental assessments of several applications from monitoring and active power management of energy consumption in prosumers’ world, to aggregation of measurement data for modelling, planning, integration, operation and evaluation of distributed Energy Storage Systems. One of the major innovation of the proposed architecture consists in the extension of the functionality of the Unbundled Smart Meter (USM), the so called SMX side that processes all the information coming from the micro-controller of the energy router (ER). Simulated results of a distributed and adaptive energy management system to be tested on this demonstrator are also presented, while briefing a number of use-cases in line with several business models that led us to this design

    Distributed Learning System Design: A New Approach and an Agenda for Future Research

    Get PDF
    This article presents a theoretical framework designed to guide distributed learning design, with the goal of enhancing the effectiveness of distributed learning systems. The authors begin with a review of the extant research on distributed learning design, and themes embedded in this literature are extracted and discussed to identify critical gaps that should be addressed by future work in this area. A conceptual framework that integrates instructional objectives, targeted competencies, instructional design considerations, and technological features is then developed to address the most pressing gaps in current research and practice. The rationale and logic underlying this framework is explicated. The framework is designed to help guide trainers and instructional designers through critical stages of the distributed learning system design process. In addition, it is intended to help researchers identify critical issues that should serve as the focus of future research efforts. Recommendations and future research directions are presented and discussed

    ADEPT2 - Next Generation Process Management Technology

    Get PDF
    If current process management systems shall be applied to a broad spectrum of applications, they will have to be significantly improved with respect to their technological capabilities. In particular, in dynamic environments it must be possible to quickly implement and deploy new processes, to enable ad-hoc modifications of single process instances at runtime (e.g., to add, delete or shift process steps), and to support process schema evolution with instance migration, i.e., to propagate process schema changes to already running instances. These requirements must be met without affecting process consistency and by preserving the robustness of the process management system. In this paper we describe how these challenges have been addressed and solved in the ADEPT2 Process Management System. Our overall vision is to provide a next generation process management technology which can be used in a variety of application domains

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures
    • …
    corecore