1,180 research outputs found

    Build-to-Last: Strength to Weight 3D Printed Objects

    Get PDF
    The emergence of low-cost 3D printers steers the investigation of new geometric problems that control the quality of the fabricated object. In this paper, we present a method to reduce the material cost and weight of a given object while providing a durable printed model that is resistant to impact and external forces. We introduce a hollowing optimization algorithm based on the concept of honeycomb-cells structure. Honeycombs structures are known to be of minimal material cost while providing strength in tension. We utilize the Voronoi diagram to compute irregular honeycomb-like volume tessellations which define the inner structure. We formulate our problem as a strength–to–weight optimization and cast it as mutually finding an optimal interior tessellation and its maximal hollowing subject to relieve the interior stress. Thus, our system allows to build-to-last 3D printed objects with large control over their strength-to-weight ratio and easily model various interior structures. We demonstrate our method on a collection of 3D objects from different categories. Furthermore, we evaluate our method by printing our hollowed models and measure their stress and weights

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    A cooling system for s.m.a. (shape memory alloy)based on the use of peltier cells

    Get PDF
    The aim of this thesis has been the study and the implementation of an innovative cooling system for S.M.A. (Shape Memory Alloy) material by using a Peltier cell. This system has demonstrated a consistent cooling time reduction during the application and so that the solution adopted has confirmed that it can be used for a better operability of the S.M.A. material during the cooling phase. After an accurate selection of possible cooling system to be adopted on these materials the better choice in terms of efficiency and energy consumption reduction has converged on Peltier cell design development. In this context for our research three investigation have been conducted. The first one has concerned an analytic investigation in order to understand the phenomenology and the terms involved during the heat exchange. After this study a numerical investigation through a Finite Element approach by commercial software has been carried out. Also an experimental investigation has been conducted, at the CIRA Smart Structure Laboratory, in order to verify the results obtained by the numerical prediction. The set-up with the Peltier cell used as heater and cooler of the S.M.A. has confirmed the soundness of the solution adopted. Finally, a correlation between numerical and experimental results have been presented demonstrating the validity of the obtained results through the developed investigations. This system, composed of Peltier cell has confirmed also an energy consumption reduction because the cell has been used for heating and cooling phase without additional system as resistive system (Joule effect). This project shall be also industrial involvement in a new cost cut down point of vie

    Annual Research Report 2020

    Get PDF

    Preliminary and advanced structural design of a three-modal camber morphing wing flap for large civil aircraft applications

    Get PDF
    Researchers and engineers design modern aircraft wings to reach high levels of efficiency with the main outcome of weight saving and airplane lift-to-drag ratio increasing. Future commercial aircraft need to be mission-adaptive to improve their operational efficiency. Within the framework of Clean Sky 2 Airgreen 2 (REG-IADP) European research project, a novel multifunctional morphing flap technology was investigated to improve the aerodynamic performances of the next Turboprop regional aircraft (90 passengers) along its flight mission. The proposed true-scale device (5 meters span with a mean chord of 0.6 meters) is conceived to replace and enhance conventional Fowler flap with new functionalities. Three different functions were enabled: overall airfoil camber morphing up to +28 deg (mode 1), +/- 10 deg (upwards/downwards) deflections of the flap tip segment (mode 2), flap tip twist of +/- 5 deg along the outer flap span (mode 3). Morphing mode 1 is supposed to be activated during take-off and landing only to enhance aircraft high-lift performances and steeper initial climb and descent. Thanks to this function, more airfoil shapes are available at each flap setting and therefore a dramatic simplification of the flap deployment system may be implemented. Morphing modes 2 and 3 are enabled in cruise and off-design flight conditions to improve wing aerodynamic efficiency. The proposed structural concept consists of a multi-box arrangement activated by segmented ribs with embedded inner mechanisms to realize the transition from the baseline configuration to different target aero-shapes while withstanding the aerodynamic loads. Lightweight and compact actuating leverages driven by electromechanical motors were properly integrated to comply with demanding requirements for real aircraft implementation: minimum actuating torque, minimum number of motors, reduced weight, and available design space. The methodology for the design of the inner mechanisms is based on a building block approach where the instant centres analysis tool is used to preliminary select the locations of the hinges’ leverages. The structural layout of an Adaptive Twist composite Tab was considered as a promising concept to balance the conflicting requirements between load-carrying capability and shape adaptivity in morphing lightweight structures. Finally, the embedded system functionality of the actuation system coupled with the structural skeleton is fully investigated by means of detailed finite element simulations. Results of actuation system performances, and aeroelastic deformations considering limit aerodynamic loads demonstrate the potential of the proposed structural concepts to be energy efficient, and lightweight for real aircraft implementation
    • …
    corecore