716 research outputs found

    Adaptive Delta Modulation in Networked Controlled Systems With bounded Disturbances

    Get PDF
    This technical note investigates the closed-loop properties of the differential coding scheme known as Delta Modulation (Δ - M) when used in feedback loops within the context of linear systems controlled through a communication network. We propose a new adaptive scheme with variable quantization step Δ, by defining an adaptation law exclusively in terms of information available at both the transmitter and receiver. With this approach, global asymptotic stability of the networked control system is achieved for a class of controllable (possibly unstable) linear plants. Moreover, thanks to the globally defined switching policy, this architecture enjoys a disturbance rejection property that allows the system to recover from any finite-time unbounded disturbance or communication loss

    Quantised control of nonlinear systems: analysis of robustness to parameter uncertainty, measurement errors, and exogenous disturbances

    No full text
    International audienceWe propose a variant of the recently introduced strategy for stabilisation with limited information by D. Liberzon and J.P. Hespanha and analyse its robustness properties. We show that, if the nominal plant can be made input-to-state stable with respect to measurement errors, parameter uncertainty and exogenous disturbances, then this robustness is preserved with this quantised feedback. More precisely, if a sufficient bandwidth is available on the communication network, then the resulting closed loop is shown to be semiglobally input-to-state practically stable

    FeedNetBack - D03.01 - Control Subject to Transmission Constraints, No Transmission Errors

    Get PDF
    This is a Deliverable Report for the FeedNetBack project (www.feednetback.eu). It describes the research performed within Work Package 3, Task 3.1 (Control Subject to Transmission Constraints, no Transmission Errors), in the first 35 months of the project. It targets the issue of control subject to transmission constraints with no transmission error. This research concerns problems arising from the presence of a communication channel (specified and modeled at the physical layer) within the control loop. The resulting constraints include finite capacities in the transmission of the sensor and/or actuator signals. Our focus is on designing new quantization, compression and coding techniques to support networked control in this scenario. A first contribution of this report is a new adaptive differential coding algorithm for systems controlled through a digital noiseless channel with limited channel rate. The proposed technique results in global stability for noiseless MIMO systems, with a data-rate which is known to be the minimal required (as assessed by information-theoretical limits known in the literature as 'data-rate theorem'). With respect to existing algorithms, our scheme improves the transient behavior. A second line of research for the noiseless scenario has addressed the effect of limited data-rate in an algorithm running over a network. As a representative example, the consensus algorithm has been analyzed, and in particular its randomized version known as gossip algorithm. Static quantizers have been considered at first (both deterministic and probabilistic) and then the dynamic adaptive quantizers have been introduced also in this setting

    Analysis and Design of Network-Based Control Systems with Binary Modulation

    Get PDF
    Network-based control systems have been emerging technologies in control and computer communication fields over the past decade. This paper focuses on the analysis and design of network-based control systems with binary modulation. First, it is shown that different modulations can result in different delays which are inevitable in network-based control systems. The delay can be seen as constant delay when the transmission time is the main consideration. Second, channel noise can result in bit error while bit error is seen as active packet loss in this paper, in this context, the conditions of signal-to-noise ratio (SNR) for binary modulation that can guarantee the stability of systems are obtained according to the proposed algorithm. Third, the system with delay and noisy communication can be modeled as an asynchronous dynamic system (ADS); in addition, the stability is analyzed and controller is designed in terms of Lyapunov function and linear matrix inequality (LMI) scheme. Finally, without loss of generality, numerical simulation demonstrates the effectiveness of the proposed scheme and designed controller based on binary amplitude shift keying (2ASK) modulation

    Robust Control

    Get PDF
    The need to be tolerant to changes in the control systems or in the operational environment of systems subject to unknown disturbances has generated new control methods that are able to deal with the non-parametrized disturbances of systems, without adapting itself to the system uncertainty but rather providing stability in the presence of errors bound in a model. With this approach in mind and with the intention to exemplify robust control applications, this book includes selected chapters that describe models of H-infinity loop, robust stability and uncertainty, among others. Each robust control method and model discussed in this book is illustrated by a relevant example that serves as an overview of the theoretical and practical method in robust control

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    Review of dynamic positioning control in maritime microgrid systems

    Get PDF
    For many offshore activities, including offshore oil and gas exploration and offshore wind farm construction, it is essential to keep the position and heading of the vessel stable. The dynamic positioning system is a progressive technology, which is extensively used in shipping and other maritime structures. To maintain the vessels or platforms from displacement, its thrusters are used automatically to control and stabilize the position and heading of vessels in sea state disturbances. The theory of dynamic positioning has been studied and developed in terms of control techniques to achieve greater accuracy and reduce ship movement caused by environmental disturbance for more than 30 years. This paper reviews the control strategies and architecture of the DPS in marine vessels. In addition, it suggests possible control principles and makes a comparison between the advantages and disadvantages of existing literature. Some details for future research on DP control challenges are discussed in this paper
    • …
    corecore