5,642 research outputs found

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches

    Get PDF
    Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, di erent approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by di erent authors from an industrial point of view. Finally, some further research lines are proposed

    Surface roughness modeling of CBN hard steel turning

    Get PDF
    Study in the paper investigate the influence of the cutting conditions parameters on surface roughness parameters during turning of hard steel with cubic boron nitrite cutting tool insert. For the modeling of surface roughness parameters was used central compositional design of experiment and artificial neural network as well. The values of surface roughness parameters Average mean arithmetic surface roughness (Ra) and Maximal surface roughness (Rmax) were predicted by this two-modeling methodology and determined models were then compared. The results showed that the proposed systems can significantly increase the accuracy of the product profile when compared to the conventional approaches. The results indicate that the design of experiments modeling technique and artificial neural network can be effectively used for the prediction of the surface roughness parameters of hard steel and determined significantly influential cutting conditions parameters

    A simulated investigation on the machining instability and dynamic surface generation

    Get PDF
    In this paper, the authors propose the generic concept of machining instability based on the analysis of all kinds of machining instable behaviors and their features. The investigation covers all aspects of the machining process, including the machine tool structural response, cutting process variables, tooling geometry and workpiece material property in a full dynamic scenario. The paper presents a novel approach for coping with the sophisticated machining instability and enabling better understanding of its effect on the surface generation through a combination of the numerical method with the characteristic equations and using block diagrams/functions to represent implicit equations and nonlinear factors. It therefore avoids the lengthy algebraic manipulations in deriving the outcome and the solution scheme is thus simple, robust and intuitive. Several machining case studies and their simulation results demonstrate the proposed approach is feasible for shop floor CNC machining optimisation in particular. The results also indicate the proposed approach is useful to monitor the machining instability and surface topography and to be potentially applied in adaptive control of the instability in real time

    Model-based observer proposal for surface roughness monitoring

    Get PDF
    Comunicación presentada a MESIC 2019 8th Manufacturing Engineering Society International Conference (Madrid, 19-21 de Junio de 2019)In the literature, many different machining monitoring systems for surface roughness and tool condition have been proposed and validated experimentally. However, these approaches commonly require costly equipment and experimentation. In this paper, we propose an alternative monitoring system for surface roughness based on a model-based observer considering simple relationships between tool wear, power consumption and surface roughness. The system estimates the surface roughness according to simple models and updates the estimation fusing the information from quality inspection and power consumption. This monitoring strategy is aligned with the industry 4.0 practices and promotes the fusion of data at different shop-floor levels

    Influence of Elastomer Layers in the Quality of Aluminum Parts on Finishing Operations

    Get PDF
    In finishing processes, the quality of aluminum parts is mostly influenced by static and dynamic phenomena. Different solutions have been studied toward a stable milling process attainment. However, the improvements obtained with the tuning of process parameters are limited by the system stiffness and external dampers devices interfere with the machining process. To deal with this challenge, this work analyzes the suitability of elastomer layers as passive damping elements directly located under the part to be machined. Thus, exploiting the sealing properties of nitrile butadiene rubber (NBR), a suitable flexible vacuum fixture is developed, enabling a proper implementation in the manufacturing process. Two different compounds are characterized under axial compression and under finishing operations. The compression tests present the effect of the feed rate and the strain accumulative effect in the fixture compressive behavior. Despite the higher strain variability of the softer rubber, different milling process parameters, such as the tool feed rate, can lead to a similar compressive behavior of the fixture regardless the elastomer hardness. On the other hand, the characterization of these flexible fixtures is completed over AA2024 floor milling of rigid parts and compared with the use of a rigid part clamping. These results show that, as the cutting speed and the feed rate increases, due to the strain evolution of the rubber, the part quality obtained tend to equalize between the flexible and the rigid clamping of the workpiece. Due to the versatility of the NBR for clamping different part geometries without new fixture redesigns, this leads to a competitive advantage of these flexible solutions against the classic rigid vacuum fixtures. Finally, a model to predict the grooving forces with a bull-nose end mill regardless of the stiffness of the part support is proposed and validated for the working range.This research was funded by Basque Government (Eusko Jaurlaritza) under the ELKARTEK Program, SMAR3NAK project, grant number KK-2019/00051

    Adaptive control optimization in micro-milling of hardened steels-evaluation of optimization approaches

    Get PDF
    Nowadays, the miniaturization of many consumer products is extending the use of micro-milling operations with high-quality requirements. However, the impacts of cutting-tool wear on part dimensions, form and surface integrity are not negligible and part quality assurance for a minimum production cost is a challenging task. In fact, industrial practices usually set conservative cutting parameters and early cutting replacement policies in order to minimize the impact of cutting-tool wear on part quality. Although these practices may ensure part integrity, the production cost is far away to be minimized, especially in highly tool-consuming operations like mold and die micro-manufacturing. In this paper, an adaptive control optimization (ACO) system is proposed to estimate cutting-tool wear in terms of part quality and adapt the cutting conditions accordingly in order to minimize the production cost, ensuring quality specifications in hardened steel micro-parts. The ACO system is based on: (1) a monitoring sensor system composed of a dynamometer, (2) an estimation module with Artificial Neural Networks models, (3) an optimization module with evolutionary optimization algorithms, and (4) a CNC interface module. In order to operate in a nearly real-time basis and facilitate the implementation of the ACO system, different evolutionary optimization algorithms are evaluated such as particle swarm optimization (PSO), genetic algorithms (GA), and simulated annealing (SA) in terms of accuracy, precision, and robustness. The results for a given micro-milling operation showed that PSO algorithm performs better than GA and SA algorithms under computing time constraints. Furthermore, the implementation of the final ACO system reported a decrease in the production cost of 12.3 and 29 % in comparison with conservative and high-production strategies, respectively

    Application of the stability lobes theory to milling of thin workpieces, experimental approach

    Get PDF
    The optimisation of cutting conditions in High Speed Machining (HSM) requires the use of a vibratory approach in order to avoid a fast deterioration of the tool and of the spindle, as well as a loss of quality of the surface rough- ness. We suggest a transposition of the method of stability lobes to the case of the milling thin parts, which is very typical from the aeronautical manufacturing context. After having modelled the dynamic behaviour of a blade and of the cutting efforts in side milling, we describe the zones of machining instability. An experimental validation permits us to emphasise the transition from stability to instability, in accordance to our theoretical results. The experimental profile is then compared with a computed profile. A decomposition of the different situations of contact between the tool and the part permits to show the influence of back cutting in the model. Tests of machining permit then to quantify its role. The objective of these works is the definition of a quick methodology for deter- mining the optimal cutting conditions in a given industrial machining configuration
    corecore