4,312 research outputs found

    Output consensus of nonlinear multi-agent systems with unknown control directions

    Get PDF
    In this paper, we consider an output consensus problem for a general class of nonlinear multi-agent systems without a prior knowledge of the agents' control directions. Two distributed Nussbaumtype control laws are proposed to solve the leaderless and leader-following adaptive consensus for heterogeneous multiple agents. Examples and simulations are given to verify their effectivenessComment: 10 pages;2 figure

    Cooperative Adaptive Control for Cloud-Based Robotics

    Full text link
    This paper studies collaboration through the cloud in the context of cooperative adaptive control for robot manipulators. We first consider the case of multiple robots manipulating a common object through synchronous centralized update laws to identify unknown inertial parameters. Through this development, we introduce a notion of Collective Sufficient Richness, wherein parameter convergence can be enabled through teamwork in the group. The introduction of this property and the analysis of stable adaptive controllers that benefit from it constitute the main new contributions of this work. Building on this original example, we then consider decentralized update laws, time-varying network topologies, and the influence of communication delays on this process. Perhaps surprisingly, these nonidealized networked conditions inherit the same benefits of convergence being determined through collective effects for the group. Simple simulations of a planar manipulator identifying an unknown load are provided to illustrate the central idea and benefits of Collective Sufficient Richness.Comment: ICRA 201

    Event-triggering architectures for adaptive control of uncertain dynamical systems

    Get PDF
    In this dissertation, new approaches are presented for the design and implementation of networked adaptive control systems to reduce the wireless network utilization while guaranteeing system stability in the presence of system uncertainties. Specifically, the design and analysis of state feedback adaptive control systems over wireless networks using event-triggering control theory is first presented. The state feedback adaptive control results are then generalized to the output feedback case for dynamical systems with unmeasurable state vectors. This event-triggering approach is then adopted for large-scale uncertain dynamical systems. In particular, decentralized and distributed adaptive control methodologies are proposed with reduced wireless network utilization with stability guarantees. In addition, for systems in the absence of uncertainties, a new observer-free output feedback cooperative control architecture is developed. Specifically, the proposed architecture is predicated on a nonminimal state-space realization that generates an expanded set of states only using the filtered input and filtered output and their derivatives for each vehicle, without the need for designing an observer for each vehicle. Building on the results of this new observer-free output feedback cooperative control architecture, an event-triggering methodology is next proposed for the output feedback cooperative control to schedule the exchanged output measurements information between the agents in order to reduce wireless network utilization. Finally, the output feedback cooperative control architecture is generalized to adaptive control for handling exogenous disturbances in the follower vehicles. For each methodology, the closed-loop system stability properties are rigorously analyzed, the effect of the user-defined event-triggering thresholds and the controller design parameters on the overall system performance are characterized, and Zeno behavior is shown not to occur with the proposed algorithms --Abstract, page iv

    Similarity Decomposition Approach to Oscillatory Synchronization for Multiple Mechanical Systems With a Virtual Leader

    Full text link
    This paper addresses the oscillatory synchronization problem for multiple uncertain mechanical systems with a virtual leader, and the interaction topology among them is assumed to contain a directed spanning tree. We propose an adaptive control scheme to achieve the goal of oscillatory synchronization. Using the similarity decomposition approach, we show that the position and velocity synchronization errors between each mechanical system (or follower) and the virtual leader converge to zero. The performance of the proposed adaptive scheme is shown by numerical simulation results.Comment: 15 pages, 3 figures, published in 2014 Chinese Control Conferenc

    Periodic event-triggered output regulation for linear multi-agent systems

    Full text link
    This study considers the problem of periodic event-triggered (PET) cooperative output regulation for a class of linear multi-agent systems. The advantage of the PET output regulation is that the data transmission and triggered condition are only needed to be monitored at discrete sampling instants. It is assumed that only a small number of agents can have access to the system matrix and states of the leader. Meanwhile, the PET mechanism is considered not only in the communication between various agents, but also in the sensor-to-controller and controller-to-actuator transmission channels for each agent. The above problem set-up will bring some challenges to the controller design and stability analysis. Based on a novel PET distributed observer, a PET dynamic output feedback control method is developed for each follower. Compared with the existing works, our method can naturally exclude the Zeno behavior, and the inter-event time becomes multiples of the sampling period. Furthermore, for every follower, the minimum inter-event time can be determined \textit{a prior}, and computed directly without the knowledge of the leader information. An example is given to verify and illustrate the effectiveness of the new design scheme.Comment: 17 pages, 13 figures, submitted to Automatica. accepte
    • …
    corecore