3,861 research outputs found

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Adaptive management of an active services network

    Get PDF
    The benefits of active services and networks cannot be realised unless the associated increase in system complexity can be efficiently managed. An adaptive management solution is required. Simulation results show that a distributed genetic algorithm, inspired by observations of bacterial communities, can offer many key management functions. The algorithm is fast and efficient, even when the demand for network services is rapidly varying

    Yeast Strain Optimization for Enological Applications

    Get PDF
    In the world of winemaking, tradition and innovation have always been side by side, on the one hand a culture of several centuries and on the other the need to constantly improve and answer new challenges. Consumers’ preferences, climate changes, and fermentation efficiency are some of the modern questions that winemakers have to consider. Yeast, at the center of the fermentation, has revealed itself as the perfect platform to answer many of these challenges. By understanding the metabolism and the genetic basis that modulate specific phenotypes of yeast during fermentation, an era of yeast optimization has surfaced in the last decades and pushed research even further. In this chapter we will focus the attention on two of the most successful techniques to that end, quantitative trait locus (QTL) and evolutionary engineering. QTL relies on a highly precise identification of the genome regions that control a phenotype of interest. The transfer of these regions to selected wine yeasts is then possible by a technique called backcrossing. Evolutionary engineering induces the yeast itself to modify its genetic background to adapt to a selective pressure and improve its fitness. The right choice of pressure leads to the improvement of its performances in enological conditions
    • …
    corecore