5,273 research outputs found

    Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles

    Get PDF
    The experimental validation of a novel architecture of an off-board, three-phase fast battery charger for electric vehicles (EVs) with innovative operation modes is presented in this paper. The proposed EV fast battery charger is based on a dual-stage power converter (ac-dc and dc-dc) sharing the same dc link. The ac-dc stage is used as an interface between the power grid and the dc link. It is composed of the parallel association of two full-bridge voltage-source converters, and allows control of the grid current and of the dc-link voltage. The dc-dc stage is used as an interface between the dc link and the batteries. It is constituted by a bidirectional three-level asymmetrical voltage-source converter, and controls the flux of current during the EV battery charging process. Compared with the traditional solutions used for EV fast battery chargers, the proposed architecture operates as an interleaved converter, facilitating the reduction of the passive filters size, and the grid current harmonic distortion for the same switching frequency. Throughout the paper, the ac-dc and dc-dc stages, and the digital control algorithms are described in detail. The experimental validation was performed in a laboratory using a developed EV fast battery charger prototype, operating through the grid-to-vehicle and the proposed charger-to-grid modes, exchanging active, and reactive power with the power grid.ERDF - European Regional Development Fund()info:eu-repo/semantics/publishedVersio

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    A comprehensive review on Bidirectional traction converter for Electric vehicles

    Get PDF
    In this fast-changing environmental condition, the effect of fossil fuel in vehicle is a significant concern. Many sustainable sources are being studied to replace the exhausting fossil fuel in most of the countries. This paper surveys the types of electric vehicle’s energy sources and current scenario of the on-road electric vehicle and its technical challenges. It summarizes the number of state-of-the-art research progresses in bidirectional dc-dc converters and its control strategies reported in last two decades. The performance of the various topologies of bidirectional dc-dc converters is also tabulated along with their references. Hence, this work will present a clear view on the development of state-of-the-art topologies in bidirectional dc-dc converters. This review paper will be a guide for the researchers for selecting suitable bidirectional traction dc-dc converters for electric vehicle and it gives the clear picture of this research field

    Three-Level Reduced Switch AC/DC/AC Power Conversion System for High Voltage Electric Vehicles

    Get PDF
    Two of the main challenges of recent electric vehicles (EVs) are the charging time and high initial cost. To solve the problem associated with long charging time, the car manufacturers are moving from 400 V battery EV (BEV) to 800 V BEV, which enables the utilization of multi-level converters in EV applications. This paper presents a power conversion system consisting of a Vienna rectifier and a two/three level hybrid inverter as a machine-side inverter to drive a permanent-magnet synchronous motor (PMSM). The Vienna rectifier improves the quality of the grid-side current and provides a regulated DC-link voltage. The proposed inverter, known as a 10-switch inverter, offers high output current quality with a lower number of active switches, making it compact and cost-effective. The field-oriented control (FOC), along with the SPWM modulation, is implemented to control the system. A reliable and cost-effective PMSM drive system demands sensorless control; therefore, a sliding mode observer (SMO) is used to estimate the rotor position and velocity. The accuracy of the proposed system was proved through the simulation results from MATLAB/Simulink.© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Equal Incremental Cost-Based Optimization Method to Enhance Efficiency for IPOP-Type Converters

    Full text link
    Systematic optimization over a wide power range is often achieved through the combination of modules of different power levels. This paper addresses the issue of enhancing the efficiency of a multiple module system connected in parallel during operation and proposes an algorithm based on equal incremental cost for dynamic load allocation. Initially, a polynomial fitting technique is employed to fit efficiency test points for individual modules. Subsequently, the equal incremental cost-based optimization is utilized to formulate an efficiency optimization and allocation scheme for the multi-module system. A simulated annealing algorithm is applied to determine the optimal power output strategy for each module at given total power flow requirement. Finally, a dual active bridge (DAB) experimental prototype with two input-parallel-output-parallel (IPOP) configurations is constructed to validate the effectiveness of the proposed strategy. Experimental results demonstrate that under the 800W operating condition, the approach in this paper achieves an efficiency improvement of over 0.74\% by comparison with equal power sharing between both modules

    Analysis, Design and Control of a Modular Full-Si Converter Concept for Electric Vehicle Ultra-Fast Charging

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    Applications of Power Electronics:Volume 2

    Get PDF

    Soft-Switching Techniques of Power Conversion System in Automotive Chargers

    Get PDF
    abstract: This thesis investigates different unidirectional topologies for the on-board charger in an electric vehicle and proposes soft-switching solutions in both the AC/DC and DC/DC stage of the converter with a power rating of 3.3 kW. With an overview on different charger topologies and their applicability with respect to the target specification a soft-switching technique to reduce the switching losses of a single phase boost-type PFC is proposed. This work is followed by a modification to the popular soft-switching topology, the dual active bridge (DAB) converter for application requiring unidirectional power flow. The topology named as the semi-dual active bridge (S-DAB) is obtained by replacing the fully active (four switches) bridge on the load side of a DAB by a semi-active (two switches and two diodes) bridge. The operating principles, waveforms in different intervals and expression for power transfer, which differ significantly from the basic DAB topology, are presented in detail. The zero-voltage switching (ZVS) characteristics and requirements are analyzed in detail and compared to those of DAB. A small-signal model of the new configuration is also derived. The analysis and performance of S-DAB are validated through extensive simulation and experimental results from a hardware prototype. Secondly, a low-loss auxiliary circuit for a power factor correction (PFC) circuit to achieve zero voltage transition is also proposed to improve the efficiency and operating frequency of the converter. The high dynamic energy generated in the switching node during turn-on is diverted by providing a parallel path through an auxiliary inductor and a transistor placed across the main inductor. The paper discusses the operating principles, design, and merits of the proposed scheme with hardware validation on a 3.3 kW/ 500 kHz PFC prototype. Modifications to the proposed zero voltage transition (ZVT) circuit is also investigated by implementing two topological variations. Firstly, an integrated magnetic structure is built combining the main inductor and auxiliary inductor in a single core reducing the total footprint of the circuit board. This improvement also reduces the size of the auxiliary capacitor required in the ZVT operation. The second modification redirects the ZVT energy from the input end to the DC link through additional half-bridge circuit and inductor. The half-bridge operating at constant 50% duty cycle simulates a switching leg of the following DC/DC stage of the converter. A hardware prototype of the above-mentioned PFC and DC/DC stage was developed and the operating principles were verified using the same.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore