25,293 research outputs found

    Enabling Adaptive Grid Scheduling and Resource Management

    Get PDF
    Wider adoption of the Grid concept has led to an increasing amount of federated computational, storage and visualisation resources being available to scientists and researchers. Distributed and heterogeneous nature of these resources renders most of the legacy cluster monitoring and management approaches inappropriate, and poses new challenges in workflow scheduling on such systems. Effective resource utilisation monitoring and highly granular yet adaptive measurements are prerequisites for a more efficient Grid scheduler. We present a suite of measurement applications able to monitor per-process resource utilisation, and a customisable tool for emulating observed utilisation models. We also outline our future work on a predictive and probabilistic Grid scheduler. The research is undertaken as part of UK e-Science EPSRC sponsored project SO-GRM (Self-Organising Grid Resource Management) in cooperation with BT

    A hyper-heuristic for adaptive scheduling in computational grids

    Get PDF
    In this paper we present the design and implementation of an hyper-heuristic for efficiently scheduling independent jobs in computational grids. An efficient scheduling of jobs to grid resources depends on many parameters, among others, the characteristics of the resources and jobs (such as computing capacity, consistency of computing, workload, etc.). Moreover, these characteristics change over time due to the dynamic nature of grid environment, therefore the planning of jobs to resources should be adaptively done. Existing ad hoc scheduling methods (batch and immediate mode) have shown their efficacy for certain types of resource and job characteristics. However, as stand alone methods, they are not able to produce the best planning of jobs to resources for different types of Grid resources and job characteristics. In this work we have designed and implemented a hyper-heuristic that uses a set of ad hoc (immediate and batch mode) scheduling methods to provide the scheduling of jobs to Grid resources according to the Grid and job characteristics. The hyper-heuristic is a high level algorithm, which examines the state and characteristics of the Grid system (jobs and resources), and selects and applies the ad hoc method that yields the best planning of jobs. The resulting hyper-heuristic based scheduler can be thus used to develop network-aware applications that need efficient planning of jobs to resources. The hyper-heuristic has been tested and evaluated in a dynamic setting through a prototype of a Grid simulator. The experimental evaluation showed the usefulness of the hyper-heuristic for planning of jobs to resources as compared to planning without knowledge of the resource and job characteristics.Peer ReviewedPostprint (author's final draft

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A Novel Workload Allocation Strategy for Batch Jobs

    Get PDF
    The distribution of computational tasks across a diverse set of geographically distributed heterogeneous resources is a critical issue in the realisation of true computational grids. Conventionally, workload allocation algorithms are divided into static and dynamic approaches. Whilst dynamic approaches frequently outperform static schemes, they usually require the collection and processing of detailed system information at frequent intervals - a task that can be both time consuming and unreliable in the real-world. This paper introduces a novel workload allocation algorithm for optimally distributing the workload produced by the arrival of batches of jobs. Results show that, for the arrival of batches of jobs, this workload allocation algorithm outperforms other commonly used algorithms in the static case. A hybrid scheduling approach (using this workload allocation algorithm), where information about the speed of computational resources is inferred from previously completed jobs, is then introduced and the efficiency of this approach demonstrated using a real world computational grid. These results are compared to the same workload allocation algorithm used in the static case and it can be seen that this hybrid approach comprehensively outperforms the static approach
    corecore