1,066 research outputs found

    Smooth Regulation of DC Voltage in VSC-MTDC Systems Based on Optimal Adaptive Droop Control

    Get PDF
    DC voltage stability and power balance are the key conditions for stable operation of DC transmission systems. The droop control does not depend on inter-station communication and has the advantage of multi-station cooperative unbalanced power dissipation, which has been widely used in the voltage source converter based multi-terminal direct current (VSC-MTDC) system. However, its control will cause DC voltage deviation, and there are a series of problems such as unstable system control and overload operation of the VSC-station due to improper setting of droop coefficient. In this paper, the infeasibility of DC voltage error-free correction under droop control mode is theoretically analyzed, and a VSC-MTDC cooperative optimization droop control strategy with DC voltage "quasi-error-free" adjustment ability is proposed. The strategy adjusts the droop coefficient in real-time by monitoring the DC voltage deviation and the power margin of the VSC-station to solve the problem of voltage deviation caused by unbalanced power consumption. At the same time, an additional DC voltage stabilizer is designed to automatically adjust the power reference value and restore the DC voltage. Finally, a five-terminal VSC-MTDC system is built under PSCAD/EMTDC to verify the feasibility of the proposed strategy

    DSOGI-PLL based power control method to mitigate control errors under disturbances of grid connected hybrid renewable power systems

    Get PDF
    The control of power converter devices is one of the main research lines in interfaced renewable energy sources, such as solar cells and wind turbines. Therefore, suitable control algorithms should be designed in order to regulate power or current properly and attain a good power quality for some disturbances, such as voltage sag/swell, voltage unbalances and fluctuations, long interruptions, and harmonics. Various synchronisation techniques based control strategies are implemented for the hybrid power system applications under unbalanced conditions in literature studies. In this paper, synchronisation algorithms based Proportional-Resonant (PR) power/current controller is applied to the hybrid power system (solar cell + wind turbine + grid), and Dual Second Order Generalized Integrator-Phase Locked Loop (DSOGI-PLL) based PR controller in stationary reference frame provides a solution to overcome these problems. The influence of various cases, such as unbalance, and harmonic conditions, is examined, analysed and compared to the PR controllers based on DSOGI-PLL and SRF-PLL. The results verify the effectiveness and correctness of the proposed DSOGI-PLL based power control method

    Line protection in inverter supplied networks

    Get PDF
    New protection methods are required to protect a distribution system when supplied by current limited converters. In this paper, a method of converter control is proposed to limit the current by reducing the voltage in the faulted phase or phases while keeping the voltage of the healthy phases unaltered. Unsymmetrical fault analysis is performed to calculate the sequence currents and voltages at the relay location, when system is supplied by a converter. Based on that converter control, distance relay performances have been evaluated in both grid-connected and islanded mode operations. Distance relay, combined with MHO and negative sequence impedance directional characteristics, is proposed as a protection scheme for the distribution system for different types of faults under the current limited environment. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations

    Neural-network based vector control of VSCHVDC transmission systems

    Get PDF
    The application of high-voltage dc (HVDC) using voltage-source converters (VSC) has surged recently in electric power transmission and distribution systems. An optimal vector control of a VSC-HVDC system which uses an artificial neural network to implement an approximate dynamic programming algorithm and is trained with Levenberg-Marquardt is introduced in this paper. The proposed neural network vector control algorithm is analyzed in comparison with standard vector control methods for various HVDC control requirements, including dc voltage, active and reactive power control, and ac system voltage support. Assessment of the resulting closed-loop control shows that the neural network vector control approach has superior performance and works efficiently within and beyond the constraints of the HVDC system, for instance, converter rated power and saturation of PWM modulation

    Artificial Intelligence-based Control Techniques for HVDC Systems

    Get PDF
    The electrical energy industry depends, among other things, on the ability of networks to deal with uncertainties from several directions. Smart-grid systems in high-voltage direct current (HVDC) networks, being an application of artificial intelligence (AI), are a reliable way to achieve this goal as they solve complex problems in power system engineering using AI algorithms. Due to their distinctive characteristics, they are usually effective approaches for optimization problems. They have been successfully applied to HVDC systems. This paper presents a number of issues in HVDC transmission systems. It reviews AI applications such as HVDC transmission system controllers and power flow control within DC grids in multi-terminal HVDC systems. Advancements in HVDC systems enable better performance under varying conditions to obtain the optimal dynamic response in practical settings. However, they also pose difficulties in mathematical modeling as they are non-linear and complex. ANN-based controllers have replaced traditional PI controllers in the rectifier of the HVDC link. Moreover, the combination of ANN and fuzzy logic has proven to be a powerful strategy for controlling excessively non-linear loads. Future research can focus on developing AI algorithms for an advanced control scheme for UPFC devices. Also, there is a need for a comprehensive analysis of power fluctuations or steady-state errors that can be eliminated by the quick response of this control scheme. This survey was informed by the need to develop adaptive AI controllers to enhance the performance of HVDC systems based on their promising results in the control of power systems. Doi: 10.28991/ESJ-2023-07-02-024 Full Text: PD

    Advanced Islanded-Mode Control of Microgrids

    Get PDF
    This thesis is focused on modeling, control, stability, and power management of electronically-interfaced distributed energy resource (DER) units for microgrids. Voltage amplitude and frequency regulation in an islanded microgrid is one of the main control requirements. To that end, first a mathematical model is developed for an islanded DER system and then, based on the developed model, amplitude and frequency control schemes are proposed for (i) balanced and linear loads and (ii) unbalanced and nonlinear loads. The proposed control strategy for unbalanced and nonlinear loads, utilizes repetitive control scheme to reject the effects of unbalanced and/or distorted load currents. Moreover, a new approach is proposed to maintain the effectiveness of the repetitive control under variable-frequency operational scenarios. The thesis also presents an adaptive feedforward compensation strategy to enhance the stability and robustness of the droop-controlled microgrids to droop coefficients and network uncertainties. The proposed feedforward strategy preserves the steady-state characteristics that the conventional droop control strategy exhibits and, therefore, does not compromise the steady-state power shares of the DER systems or the voltage/frequency regulation of the microgrid. Finally, a unified control strategy is proposed to enable islanded and grid-connected operation of DER systems, with no need to detect the microgrid mode of operation or to switch between different controllers, simplifying the control of the host microgrid. The effectiveness of the proposed control strategies are demonstrated through time-domain simulation studies conducted in the PSCAD/EMTDC software environment

    Plug-and-play and coordinated control for bus-connected AC islanded microgrids

    Full text link
    This paper presents a distributed control architecture for voltage and frequency stabilization in AC islanded microgrids. In the primary control layer, each generation unit is equipped with a local controller acting on the corresponding voltage-source converter. Following the plug-and-play design approach previously proposed by some of the authors, whenever the addition/removal of a distributed generation unit is required, feasibility of the operation is automatically checked by designing local controllers through convex optimization. The update of the voltage-control layer, when units plug -in/-out, is therefore automatized and stability of the microgrid is always preserved. Moreover, local control design is based only on the knowledge of parameters of power lines and it does not require to store a global microgrid model. In this work, we focus on bus-connected microgrid topologies and enhance the primary plug-and-play layer with local virtual impedance loops and secondary coordinated controllers ensuring bus voltage tracking and reactive power sharing. In particular, the secondary control architecture is distributed, hence mirroring the modularity of the primary control layer. We validate primary and secondary controllers by performing experiments with balanced, unbalanced and nonlinear loads, on a setup composed of three bus-connected distributed generation units. Most importantly, the stability of the microgrid after the addition/removal of distributed generation units is assessed. Overall, the experimental results show the feasibility of the proposed modular control design framework, where generation units can be added/removed on the fly, thus enabling the deployment of virtual power plants that can be resized over time

    A framework of L-HC and AM-MKF for accurate harmonic supportive control schemes

    Get PDF
    In this paper, an enhanced optimal control technique based on adaptive Maximize-M Kalman filter (AM-MKF) is used. To maximize power extraction from solar PV (Photovoltaic) panel, a learning-based hill climbing (L-HC) algorithm is implemented for a grid integrated solar PV system. For the testing, a three-phase system configuration based on 2-stage topology, and the deployed load on a common connection point (CCP) are considered. The L-HC MPPT algorithm is the modified version of HC (Hill Climbing) algorithm, where issues like, oscillation in steady-state condition and, slow response during dynamic change condition are mitigated. The AM-MKF is an advanced version of KF (Kalman Filter), where for optimal estimation in KF, an AM-M (Adaptive Maximize-M) concept is integrated. The key objective of the novel control strategy is to extract maximum power from the solar panel and to meet the demand of the load. After satisfying the load demand, the rest power is transferred to the grid. However, in the nighttime, the system is used for reactive power support, which mode of operation is known as a DSTATCOM (Distribution Static Compensator). The capability of developed control strategies, is proven through testing on a prototype. During experimentation, different adverse grid conditions, unbalanced load situation and variable solar insolation are considered. In these situations, the satisfactory performances of control techniques prove the effectiveness of the developed control strategy

    Control strategy of grid connected power converter based on virtual flux approach

    Get PDF
    A la portada consta el nom del programa interuniversitari: Joint Doctoral Programme in Electric Energy Systems [by the] Universidad de Málaga, Universidad de Sevilla, Universidad del País Vasco/Euskal Erriko Unibertsitatea i Universitat Politècnica de CatalunyaDistributed Generation (DG) provides an alternative to the Centralized Generation (CG) by means of generating electricity near to the end user of power with the employment of small-scale technologies to produce electricity, mainly using Renewable Energy Sources (RES). The prospects of renewable energy integration during the next years are still very optimistic. This PhD dissertation is made to provide an alternative control framework for the grid connected power converter by adopting the virtual flux concept in the control layer. This dissertation can be divided into three main topics. The 1st topic presents the voltage sensorless control system for the grid-connected power converter. The control system presented is done without depending on AC-voltage measurement where the grid synchronization is based on the Virtual Flux (VF) estimation. In this regard, the Frequency Locked Loop (FLL) is used in conjunction with the estimation scheme to make the system fully adaptive to the frequency changes. This voltage sensorless application is useful for reducing cost and complexity of the control hardware. It is also can be utilized in case of limited reliability or availability of voltage measurements at the intended point of synchronization to the grid. Considering that most previous studies are based on the VF estimation for the case of power converter connected to the grid through the L-filter or LC-filter, this dissertation is focused on the power converter connected to the grid through the LCL filter. The Proportional Resonant (PR) current controller is adopted in the inner loop control of the power electronics-based converter to test the performance of such system. Another control method based on VF synchronization that permits to control the active and reactive power delivery in a remote point of the grid is also presented in this dissertation. This is due to the fact that the VF is implemented that the voltage in a remote point of the line can be estimated. As it will be shown in simulations and experiments, the proposed control scheme provides a good tracking and dynamic performance under step changes in the reference power. The fast synchronization and the smooth reference tracking achieved in transient conditions have demonstrated the effectiveness of the Dual Second Order Generalized Integrator controlled as Quadrature Signal Generator (DSOGI-QSG) and also the current controller used in the proposed system. In addition to the power control itself, this study could also benefit the frequency and the voltage regulation methods in distributed generation applications as for instance in microgrid. Considering the fact that the grid connected power converter can be controlled as a virtual synchronous generator where the flux is a variable to be used for controlling its operation, this dissertation also presents a Virtual Synchronous Flux Controller (VSFC) as a new control framework of the grid connected power converter. In this regard, a new control strategy in the inner loop control of the power converter will be proposed. The main components of the outer loop control of VSFC are based on the active and reactive power control. The results presented show that the VSFC works well to control the active and reactive power without considering any synchronization system. The inner loop control is able to work as it is required, and the measurement flux is able to track the reference flux without any significant delays. All the work presented in this dissertation are supported by mathematical and simulation analysis. In order to endorse the conclusions achieved, a complete experimental validations have been conducted before wrapping this dissertation with a conclusion and recommendation for future enhancement of the control strategies that have been presented.Postprint (published version
    corecore