21,933 research outputs found

    Coding of non-stationary sources as a foundation for detecting change points and outliers in binary time-series

    Get PDF
    An interesting scheme for estimating and adapting distributions in real-time for non-stationary data has recently been the focus of study for several different tasks relating to time series and data mining, namely change point detection, outlier detection and online compression/sequence prediction. An appealing feature is that unlike more sophisticated procedures, it is as fast as the related stationary procedures which are simply modified through discounting or windowing. The discount scheme makes older observations lose their influence on new predictions. The authors of this article recently used a discount scheme for introducing an adaptive version of the Context Tree Weighting compression algorithm. The mentioned change point and outlier detection methods rely on the changing compression ratio of an online compression algorithm. Here we are beginning to provide theoretical foundations for the use of these adaptive estimation procedures that have already shown practical promise

    Linear MMSE-Optimal Turbo Equalization Using Context Trees

    Get PDF
    Formulations of the turbo equalization approach to iterative equalization and decoding vary greatly when channel knowledge is either partially or completely unknown. Maximum aposteriori probability (MAP) and minimum mean square error (MMSE) approaches leverage channel knowledge to make explicit use of soft information (priors over the transmitted data bits) in a manner that is distinctly nonlinear, appearing either in a trellis formulation (MAP) or inside an inverted matrix (MMSE). To date, nearly all adaptive turbo equalization methods either estimate the channel or use a direct adaptation equalizer in which estimates of the transmitted data are formed from an expressly linear function of the received data and soft information, with this latter formulation being most common. We study a class of direct adaptation turbo equalizers that are both adaptive and nonlinear functions of the soft information from the decoder. We introduce piecewise linear models based on context trees that can adaptively approximate the nonlinear dependence of the equalizer on the soft information such that it can choose both the partition regions as well as the locally linear equalizer coefficients in each region independently, with computational complexity that remains of the order of a traditional direct adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer and we quantify the MSE performance of the resulting algorithm and the convergence of its MSE to that of the linear minimum MSE estimator as the depth of the context tree and the data length increase.Comment: Submitted to the IEEE Transactions on Signal Processin

    Increased compression efficiency of AVC and HEVC CABAC by precise statistics estimation

    Get PDF
    The paper presents Improved Adaptive Arithmetic Coding algorithm for application in future video compression technology. The proposed solution is based on the Context-based Adaptive Binary Arithmetic Coding (CABAC) technique and uses the authors’ mechanism of symbols probability estimation that exploits Context-Tree Weighting (CTW) technique. This paper proposes the version of the algorithm, that allows an arbitrary selection of depth of context trees, when activating the algorithm in the framework of the AVC or HEVC video encoders. The algorithm has been tested in terms of coding efficiency of data and its computational complexity. Results showed, that depending of depth of context trees from 0.1% to 0.86% reduction of bitrate is achieved, when using the algorithm in the HEVC video encoder and 0.4% to 2.3% compression gain in the case of the AVC. The new solution increases complexity of entropy encoder itself, however, this does not translate into increase the complexity of the whole video encoder
    • …
    corecore