864 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Mobile cloud computing and network function virtualization for 5g systems

    Get PDF
    The recent growth of the number of smart mobile devices and the emergence of complex multimedia mobile applications have brought new challenges to the design of wireless mobile networks. The envisioned Fifth-Generation (5G) systems are equipped with different technical solutions that can accommodate the increasing demands for high date rate, latency-limited, energy-efficient and reliable mobile communication networks. Mobile Cloud Computing (MCC) is a key technology in 5G systems that enables the offloading of computationally heavy applications, such as for augmented or virtual reality, object recognition, or gaming from mobile devices to cloudlet or cloud servers, which are connected to wireless access points, either directly or through finite-capacity backhaul links. Given the battery-limited nature of mobile devices, mobile cloud computing is deemed to be an important enabler for the provision of such advanced applications. However, computational tasks offloading, and due to the variability of the communication network through which the cloud or cloudlet is accessed, may incur unpredictable energy expenditure or intolerable delay for the communications between mobile devices and the cloud or cloudlet servers. Therefore, the design of a mobile cloud computing system is investigated by jointly optimizing the allocation of radio, computational resources and backhaul resources in both uplink and downlink directions. Moreover, the users selected for cloud offloading need to have an energy consumption that is smaller than the amount required for local computing, which is achieved by means of user scheduling. Motivated by the application-centric drift of 5G systems and the advances in smart devices manufacturing technologies, new brand of mobile applications are developed that are immersive, ubiquitous and highly-collaborative in nature. For example, Augmented Reality (AR) mobile applications have inherent collaborative properties in terms of data collection in the uplink, computing at the cloud, and data delivery in the downlink. Therefore, the optimization of the shared computing and communication resources in MCC not only benefit from the joint allocation of both resources, but also can be more efficiently enhanced by sharing the offloaded data and computations among multiple users. As a result, a resource allocation approach whereby transmitted, received and processed data are shared partially among the users leads to more efficient utilization of the communication and computational resources. As a suggested architecture in 5G systems, MCC decouples the computing functionality from the platform location through the use of software virtualization to allow flexible provisioning of the provided services. Another virtualization-based technology in 5G systems is Network Function Virtualization (NFV) which prescribes the instantiation of network functions on general-purpose network devices, such as servers and switches. While yielding a more flexible and cost-effective network architecture, NFV is potentially limited by the fact that commercial off-the-shelf hardware is less reliable than the dedicated network elements used in conventional cellular deployments. The typical solution for this problem is to duplicate network functions across geographically distributed hardware in order to ensure diversity. For that reason, the development of fault-tolerant virtualization strategies for MCC and NFV is necessary to ensure reliability of the provided services

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    AI-Empowered Fog/Edge Resource Management for IoT Applications: A Comprehensive Review, Research Challenges and Future Perspectives

    Get PDF

    Edge Intelligence : Empowering Intelligence to the Edge of Network

    Get PDF
    Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis proximity to where data are captured based on artificial intelligence. Edge intelligence aims at enhancing data processing and protects the privacy and security of the data and users. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this article, we present a thorough and comprehensive survey of the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, i.e., edge caching, edge training, edge inference, and edge offloading based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare, and analyze the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, and so on. This article provides a comprehensive survey of edge intelligence and its application areas. In addition, we summarize the development of the emerging research fields and the current state of the art and discuss the important open issues and possible theoretical and technical directions.Peer reviewe
    • …
    corecore