6,746 research outputs found

    Decoding Neural Signals with Computational Models: A Systematic Review of Invasive BMI

    Full text link
    There are significant milestones in modern human's civilization in which mankind stepped into a different level of life with a new spectrum of possibilities and comfort. From fire-lighting technology and wheeled wagons to writing, electricity and the Internet, each one changed our lives dramatically. In this paper, we take a deep look into the invasive Brain Machine Interface (BMI), an ambitious and cutting-edge technology which has the potential to be another important milestone in human civilization. Not only beneficial for patients with severe medical conditions, the invasive BMI technology can significantly impact different technologies and almost every aspect of human's life. We review the biological and engineering concepts that underpin the implementation of BMI applications. There are various essential techniques that are necessary for making invasive BMI applications a reality. We review these through providing an analysis of (i) possible applications of invasive BMI technology, (ii) the methods and devices for detecting and decoding brain signals, as well as (iii) possible options for stimulating signals into human's brain. Finally, we discuss the challenges and opportunities of invasive BMI for further development in the area.Comment: 51 pages, 14 figures, review articl

    Co-adaptive control strategies in assistive Brain-Machine Interfaces

    Get PDF
    A large number of people with severe motor disabilities cannot access any of the available control inputs of current assistive products, which typically rely on residual motor functions. These patients are therefore unable to fully benefit from existent assistive technologies, including communication interfaces and assistive robotics. In this context, electroencephalography-based Brain-Machine Interfaces (BMIs) offer a potential non-invasive solution to exploit a non-muscular channel for communication and control of assistive robotic devices, such as a wheelchair, a telepresence robot, or a neuroprosthesis. Still, non-invasive BMIs currently suffer from limitations, such as lack of precision, robustness and comfort, which prevent their practical implementation in assistive technologies. The goal of this PhD research is to produce scientific and technical developments to advance the state of the art of assistive interfaces and service robotics based on BMI paradigms. Two main research paths to the design of effective control strategies were considered in this project. The first one is the design of hybrid systems, based on the combination of the BMI together with gaze control, which is a long-lasting motor function in many paralyzed patients. Such approach allows to increase the degrees of freedom available for the control. The second approach consists in the inclusion of adaptive techniques into the BMI design. This allows to transform robotic tools and devices into active assistants able to co-evolve with the user, and learn new rules of behavior to solve tasks, rather than passively executing external commands. Following these strategies, the contributions of this work can be categorized based on the typology of mental signal exploited for the control. These include: 1) the use of active signals for the development and implementation of hybrid eyetracking and BMI control policies, for both communication and control of robotic systems; 2) the exploitation of passive mental processes to increase the adaptability of an autonomous controller to the user\u2019s intention and psychophysiological state, in a reinforcement learning framework; 3) the integration of brain active and passive control signals, to achieve adaptation within the BMI architecture at the level of feature extraction and classification

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Robot Learning and Control Using Error-Related Cognitive Brain Signals

    Get PDF
    Durante los últimos años, el campo de los interfaces cerebro-máquina (BMIs en inglés) ha demostrado cómo humanos y animales son capaces de controlar dispositivos neuroprotésicos directamente de la modulación voluntaria de sus señales cerebrales, tanto en aproximaciones invasivas como no invasivas. Todos estos BMIs comparten un paradigma común, donde el usuario trasmite información relacionada con el control de la neuroprótesis. Esta información se recoge de la actividad cerebral del usuario, para luego ser traducida en comandos de control para el dispositivo. Cuando el dispositivo recibe y ejecuta la orden, el usuario recibe una retroalimentación del rendimiento del sistema, cerrando de esta manera el bucle entre usuario y dispositivo. La mayoría de los BMIs decodifican parámetros de control de áreas corticales para generar la secuencia de movimientos para la neuroprótesis. Esta aproximación simula al control motor típico, dado que enlaza la actividad neural con el comportamiento o la ejecución motora. La ejecución motora, sin embargo, es el resultado de la actividad combinada del córtex cerebral, áreas subcorticales y la médula espinal. De hecho, numerosos movimientos complejos, desde la manipulación a andar, se tratan principalmente al nivel de la médula espinal, mientras que las áreas corticales simplemente proveen el punto del espacio a alcanzar y el momento de inicio del movimiento. Esta tesis propone un paradigma BMI alternativo que trata de emular el rol de los niveles subcorticales durante el control motor. El paradigma se basa en señales cerebrales que transportan información cognitiva asociada con procesos de toma de decisiones en movimientos orientados a un objetivo, y cuya implementación de bajo nivel se maneja en niveles subcorticales. A lo largo de la tesis, se presenta el primer paso hacia el desarrollo de este paradigma centrándose en una señal cognitiva específica relacionada con el procesamiento de errores humano: los potenciales de error (ErrPs) medibles mediante electroencefalograma (EEG). En esta propuesta de paradigma, la neuroprótesis ejecuta activamente una tarea de alcance mientras el usuario simplemente monitoriza el rendimiento del dispositivo mediante la evaluación de la calidad de las acciones ejecutadas por el dispositivo. Estas evaluaciones se traducen (gracias a los ErrPs) en retroalimentación para el dispositivo, el cual las usa en un contexto de aprendizaje por refuerzo para mejorar su comportamiento. Esta tesis demuestra por primera vez este paradigma BMI de enseñanza con doce sujetos en tres experimentos en bucle cerrado concluyendo con la operación de un manipulador robótico real. Como la mayoría de BMIs, el paradigma propuesto requiere una etapa de calibración específica para cada sujeto y tarea. Esta fase, un proceso que requiere mucho tiempo y extenuante para el usuario, dificulta la distribución de los BMIs a aplicaciones fuera del laboratorio. En el caso particular del paradigma propuesto, una fase de calibración para cada tarea es altamente impráctico ya que el tiempo necesario para esta fase se suma al tiempo de aprendizaje de la tarea, retrasando sustancialmente el control final del dispositivo. Así, sería conveniente poder entrenar clasificadores capaces de funcionar independientemente de la tarea de aprendizaje que se esté ejecutando. Esta tesis analiza desde un punto de vista electrofisiológico cómo los potenciales se ven afectados por diferentes tareas ejecutadas por el dispositivo, mostrando cambios principalmente en la latencia la señal; y estudia cómo transferir el clasificador entre tareas de dos maneras: primero, aplicando clasificadores adaptativos del estado del arte, y segundo corrigiendo la latencia entre las señales de dos tareas para poder generalizar entre ambas. Otro reto importante bajo este paradigma viene del tiempo necesario para aprender la tarea. Debido al bajo ratio de información transferida por minuto del BMI, el sistema tiene una pobre escalabilidad: el tiempo de aprendizaje crece exponencialmente con el tamaño del espacio de aprendizaje, y por tanto resulta impráctico obtener el comportamiento motor óptimo mediante aprendizaje por refuerzo. Sin embargo, este problema puede resolverse explotando la estructura de la tarea de aprendizaje. Por ejemplo, si el número de posiciones a alcanzar es discreto se puede pre-calcular la política óptima para cada posible posición. En esta tesis, se muestra cómo se puede usar la estructura de la tarea dentro del paradigma propuesto para reducir enormemente el tiempo de aprendizaje de la tarea (de diez minutos a apenas medio minuto), mejorando enormemente así la escalabilidad del sistema. Finalmente, esta tesis muestra cómo, gracias a las lecciones aprendidas en los descubrimientos anteriores, es posible eliminar completamente la etapa de calibración del paradigma propuesto mediante el aprendizaje no supervisado del clasificador al mismo tiempo que se está ejecutando la tarea. La idea fundamental es calcular un conjunto de clasificadores que sigan las restricciones de la tarea anteriormente usadas, para a continuación seleccionar el mejor clasificador del conjunto. De esta manera, esta tesis presenta un BMI plug-and-play que sigue el paradigma propuesto, aprende la tarea y el clasificador y finalmente alcanza la posición del espacio deseada por el usuario
    corecore