83 research outputs found

    Side Channel Leakage Analysis - Detection, Exploitation and Quantification

    Get PDF
    Nearly twenty years ago the discovery of side channel attacks has warned the world that security is more than just a mathematical problem. Serious considerations need to be placed on the implementation and its physical media. Nowadays the ever-growing ubiquitous computing calls for in-pace development of security solutions. Although the physical security has attracted increasing public attention, side channel security remains as a problem that is far from being completely solved. An important problem is how much expertise is required by a side channel adversary. The essential interest is to explore whether detailed knowledge about implementation and leakage model are indispensable for a successful side channel attack. If such knowledge is not a prerequisite, attacks can be mounted by even inexperienced adversaries. Hence the threat from physical observables may be underestimated. Another urgent problem is how to secure a cryptographic system in the exposure of unavoidable leakage. Although many countermeasures have been developed, their effectiveness pends empirical verification and the side channel security needs to be evaluated systematically. The research in this dissertation focuses on two topics, leakage-model independent side channel analysis and security evaluation, which are described from three perspectives: leakage detection, exploitation and quantification. To free side channel analysis from the complicated procedure of leakage modeling, an observation to observation comparison approach is proposed. Several attacks presented in this work follow this approach. They exhibit efficient leakage detection and exploitation under various leakage models and implementations. More importantly, this achievement no longer relies on or even requires precise leakage modeling. For the security evaluation, a weak maximum likelihood approach is proposed. It provides a quantification of the loss of full key security due to the presence of side channel leakage. A constructive algorithm is developed following this approach. The algorithm can be used by security lab to measure the leakage resilience. It can also be used by a side channel adversary to determine whether limited side channel information suffices the full key recovery at affordable expense

    Physical Security of Cryptographic Algorithm Implementations

    Get PDF
    This thesis deals with physical attacks on implementations of cryptographic algorithms and countermeasures against these attacks. Physical attacks exploit properties of an implementation to recover secret cryptographic keys. Particularly vulnerable to physical attacks are embedded devices. In the area of side-channel analysis, this thesis addresses attacks that exploit observations of power consumption or electromagnetic leakage of the device and target symmetric cryptographic algorithms. First, this work proposes a new combination of two well-known attacks that is more efficient than each of the attacks individually. Second, this work studies attacks exploiting leakage induced by microprocessor cache mechanism, suggesting an algorithm that can recover the secret key in the presence of uncertainties in cache event detection from side-channel acquisitions. Third, practical side-channel attacks are discovered against the AES engine of the AVR XMEGA, a recent versatile microcontroller. In the area of fault analysis, this thesis extends existing attacks against the RSA digital signature algorithm implemented with the Chinese remainder theorem to a setting where parts of the signed message are unknown to the attacker. The new attacks are applicable in particular to several widely used standards in modern smart card applications. In the area of countermeasures, this work proposes a new algorithm for random delay generation in embedded software. The new algorithm is more efficient than the previously suggested algorithms since it introduces more uncertainty for the attacker with less performance overhead. The results presented in this thesis are practically validated in experiments with general-purpose 8-bit AVR and 32-bit ARM microcontrollers that are used in many embedded devices

    Anonymous subject identification and privacy information management in video surveillance

    Get PDF
    The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework

    Provably Secure Authenticated Encryption

    Get PDF
    Authenticated Encryption (AE) is a symmetric key cryptographic primitive that ensures confidentiality and authenticity of processed messages at the same time. The research of AE as a primitive in its own right started in 2000. The security goals of AE were captured in formal definitions in the tradition in the tradition of provable security (such as NAE, MRAE, OAE, RAE or the RUP), where the security of a scheme is formally proven assuming the security of an underlying building block. The prevailing syntax moved to nonce-based AE with associated data (which is an additional input that gets authenticated, but not encrypted). Other types of AE schemes appeared as well, e.g. ones that supported stateful sessions. Numerous AE schemes were designed; in the early years, these were almost exclusively blockcipher modes of operation, most notably OCB in 2001, CCM in 2003 and GCM in 2004. At the same time, issues were discovered both with the security and applicability of the most popular AE schemes, and other applications of symmetric key cryptography. As a response, the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) was started in 2013. Its goals were to identify a portfolio of new, secure and reliable AE schemes that would satisfy the needs of practical applications, and also to boost the research in the area of AE. Prompted by CAESAR, 57 new schemes were designed, new types of constructions that gained popularity appeared (such as the Sponge-based AE schemes), and new notions of security were proposed (such as RAE). The final portfolio of the CAESAR competition should be announced in 2018. In this thesis, we push the state of the art in the field of AE in several directions. All of them are related to provable security, in one way, or another. We propose OMD, the first provably secure dedicated AE scheme that is based on a compression function. We further modify OMD to achieve nonce misuse-resistant security (MRAE). We also propose another provably secure variant of OMD called pure OMD, which enjoys a great improvement of performance over OMD. Inspired by the modifications that gave rise to pure OMD, we turn to the popular Sponge-based AE schemes and prove that similar measures can also be applied to the keyed Sponge and keyed Duplex (a variant of the Sponge), allowing a substantial increase of performance without an impact on security. We then address definitional aspects of AE. We critically evaluate the security notion of OAE, whose authors claimed that it provides the best possible security for online schemes under nonce reuse. We challenge these claims, and discuss what are the meaningful requirements for online AE schemes. Based on our findings, we formulate a new definition of online AE security under nonce-reuse, and demonstrate its feasibility. We next turn our attention to the security of nonce-based AE schemes under stretch misuse; i.e. when a scheme is used with varying ciphertext expansion under the same key, even though it should not be. We argue that varying the stretch is plausible, and formulate several notions that capture security in presence of variable stretch. We establish their relations to previous notions, and demonstrate the feasibility of security in this setting. We finally depart from provable security, with the intention to complement it. We compose a survey of universal forgeries, decryption attacks and key recovery attacks on 3rd round CAESAR candidates

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    corecore