852 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A cell outage management framework for dense heterogeneous networks

    Get PDF
    In this paper, we present a novel cell outage management (COM) framework for heterogeneous networks with split control and data planes-a candidate architecture for meeting future capacity, quality-of-service, and energy efficiency demands. In such an architecture, the control and data functionalities are not necessarily handled by the same node. The control base stations (BSs) manage the transmission of control information and user equipment (UE) mobility, whereas the data BSs handle UE data. An implication of this split architecture is that an outage to a BS in one plane has to be compensated by other BSs in the same plane. Our COM framework addresses this challenge by incorporating two distinct cell outage detection (COD) algorithms to cope with the idiosyncrasies of both data and control planes. The COD algorithm for control cells leverages the relatively larger number of UEs in the control cell to gather large-scale minimization-of-drive-test report data and detects an outage by applying machine learning and anomaly detection techniques. To improve outage detection accuracy, we also investigate and compare the performance of two anomaly-detecting algorithms, i.e., k-nearest-neighbor- and local-outlier-factor-based anomaly detectors, within the control COD. On the other hand, for data cell COD, we propose a heuristic Grey-prediction-based approach, which can work with the small number of UE in the data cell, by exploiting the fact that the control BS manages UE-data BS connectivity and by receiving a periodic update of the received signal reference power statistic between the UEs and data BSs in its coverage. The detection accuracy of the heuristic data COD algorithm is further improved by exploiting the Fourier series of the residual error that is inherent to a Grey prediction model. Our COM framework integrates these two COD algorithms with a cell outage compensation (COC) algorithm that can be applied to both planes. Our COC solution utilizes an actor-critic-based reinforcement learning algorithm, which optimizes the capacity and coverage of the identified outage zone in a plane, by adjusting the antenna gain and transmission power of the surrounding BSs in that plane. The simulation results show that the proposed framework can detect both data and control cell outage and compensate for the detected outage in a reliable manner

    Detection and compensation methods for self-healing in self-organizing networks

    Get PDF
    Uno de los elementos clave en la definición de los recientes estándares de comunicaciones móviles del 3rd Generation Partnership Project (3GPP), LTE (Long Term Evolution) y LTEAdvanced, es la consideración de funciones que se puedan ejecutar de manera automática. Este tipo de redes se conocen como redes Auto-Organizadas (Self-Organizing Networks, SON). Las funciones SON permiten hacer frente al importante incremento en tamaño y complejidad que han experimentado las redes de comunicaciones móviles en los últimos años. El número de usuarios es cada vez mayor y los servicios requieren gran cantidad de recursos y altas tasas de transmisión por lo que la gestión de estas redes se está convirtiendo en una tarea cada vez más compleja. Además, cuando las redes de quinta generación (5G) se implanten, la complejidad y el coste asociado a estas nuevas redes será todavía mayor. En este contexto, las funciones SON resultan imprescindibles para llevar a cabo la gestión de estas redes tan complejas. El objetivo de SON es definir un conjunto de funcionalidades que permitan automatizar la gestión de las redes móviles. Mediante la automatización de las tareas de gestión y optimización es posible reducir los gastos de operación y capital (OPEX y CAPEX). Las funciones SON se clasifican en tres grupos: Auto- Configuración, Auto-Optimización y Auto-Curación. Las funciones de Auto-Configuración tienen como objetivo la definición de los distintos parámetros de configuración durante la fase de planificación de una red o después de la introducción de un nuevo elemento en una red ya desplegada. Las funciones de Auto-Optimización pretenden modificar los parámetros de configuración de una red para maximizar el rendimiento de la misma y adaptarse a distintos escenarios. Las funciones de Auto- Curación tienen como objetivo detectar y diagnosticar posibles fallos en la red que afecten al funcionamiento de la misma de manera automática. Cuando un fallo es detectado en una celda este puede ser recuperado (función de recuperación) o compensado (función de compensación). Uno de los principales desafíos relacionado con las funciones SON es el desarrollo de métodos eficientes para la automatización de las tareas de optimización y mantenimiento de una red móvil. En este sentido, la comunidad científica ha centrado su interés en la definición de métodos de Auto-Configuración y Auto-Optimización siendo las funciones de Auto-Curación las menos exploradas. Por esta razón, no es fácil encontrar algoritmos de detección y compensación realmente eficientes. Muchos estudios presentan métodos de detección y compensación que producen buenos resultados pero a costa de una gran complejidad. Además, en muchos casos, los algoritmos de detección y compensación se presentan como solución general para distintos tipos de fallo lo que hace que disminuya la efectividad. Por otro lado, la investigación ha estado tradicionalmente enfocada a la búsqueda de soluciones SON basadas en modelos analíticos o simulados. Sin embargo, el principal desafío ahora está relacionado con la explotación de datos reales disponibles con el objetivo de crear una base del conocimiento útil que maximice el funcionamiento de las actuales soluciones SON. Esto es especialmente interesante en el área de las funciones de Auto-Curación. En este contexto, la disponibilidad de un histórico de datos es crucial para entender cómo funciona la red en condiciones normales o cuando se producen fallos y como estos fallos afectan a la calidad de servicio experimentada por los usuarios. El principal objetivo de esta tesis es el desarrollo de algoritmos eficientes de detección y compensación de fallos en redes móviles. En primer lugar, se propone un método de detección de celdas caídas basado en estadísticas de traspasos. Una de las principales características de este algoritmo es que su simplicidad permite detectar celdas caídas en cualquier red inmediatamente después de acceder a los indicadores de funcionamiento de la misma. En segundo lugar, una parte importante de la tesis está centrada en la función de compensación. Por un lado, se propone una novedosa metodología de compensación de celdas caídas. Este nuevo método permite adaptar la compensación a la degradación específica provocada por la celda caída. Una vez que se detecta un problema de celda caída, se realiza un análisis de la degradación producida por este fallo en las celdas vecinas. A continuación, diferentes algoritmos de compensación se aplican a las distintas celdas vecinas en función del tipo de degradación detectado. En esta tesis se ha llevado a cabo un estudio de esta fase de análisis utilizando datos de una red real actualmente en uso. Por otro lado, en esta tesis también se propone un método de compensación que considera un fallo diferente al de celda caída. En concreto, se propone un método de compensación para un fallo de cobertura débil basado en modificaciones del margen de traspaso. Por último, aunque es interesante evaluar los métodos propuestos en redes reales, no siempre es posible. Los operadores suelen ser reacios a probar métodos que impliquen cambios en los parámetros de configuración de los elementos de la red. Por esta razón, una parte de esta tesis ha estado centrada en la implementación de un simulador dinámico de nivel de sistema que permita la evaluación de los métodos propuestos

    A Survey of Self Organisation in Future Cellular Networks

    Full text link

    Self-Healing in LTE networks with unsupervised learning techniques

    Get PDF
    Recently the cellular networks are getting more complex in maintenance and network management, and rapidly growing in the number of users so that repairing and maintenance of the system are becoming more challenging and expensive. To solve the problems and maintain the system, operators depend on their experience but by increasing in type and density of the networks, this way will not operate as before. So Self-organizing network (SON) has been used in this study to solve these issues

    Self-Healing in LTE networks with unsupervised learning techniques

    Get PDF
    Recently the cellular networks are getting more complex in maintenance and network management, and rapidly growing in the number of users so that repairing and maintenance of the system are becoming more challenging and expensive. To solve the problems and maintain the system, operators depend on their experience but by increasing in type and density of the networks, this way will not operate as before. So Self-organizing network (SON) has been used in this study to solve these issues
    corecore