19 research outputs found

    Usability heuristics for fast crime data anonymization in resource-constrained contexts

    Get PDF
    This thesis considers the case of mobile crime-reporting systems that have emerged as an effective and efficient data collection method in low and middle-income countries. Analyzing the data, can be helpful in addressing crime. Since law enforcement agencies in resource-constrained context typically do not have the expertise to handle these tasks, a cost-effective strategy is to outsource the data analytics tasks to third-party service providers. However, because of the sensitivity of the data, it is expedient to consider the issue of privacy. More specifically, this thesis considers the issue of finding low-intensive computational solutions to protecting the data even from an "honest-but-curious" service provider, while at the same time generating datasets that can be queried efficiently and reliably. This thesis offers a three-pronged solution approach. Firstly, the creation of a mobile application to facilitate crime reporting in a usable, secure and privacy-preserving manner. The second step proposes a streaming data anonymization algorithm, which analyses reported data based on occurrence rate rather than at a preset time on a static repository. Finally, in the third step the concept of using privacy preferences in creating anonymized datasets was considered. By taking into account user preferences the efficiency of the anonymization process is improved upon, which is beneficial in enabling fast data anonymization. Results from the prototype implementation and usability tests indicate that having a usable and covet crime-reporting application encourages users to declare crime occurrences. Anonymizing streaming data contributes to faster crime resolution times, and user privacy preferences are helpful in relaxing privacy constraints, which makes for more usable data from the querying perspective. This research presents considerable evidence that the concept of a three-pronged solution to addressing the issue of anonymity during crime reporting in a resource-constrained environment is promising. This solution can further assist the law enforcement agencies to partner with third party in deriving useful crime pattern knowledge without infringing on users' privacy. In the future, this research can be extended to more than one low-income or middle-income countries

    z-anonymity: Zero-Delay Anonymization for Data Streams

    Get PDF
    With the advent of big data and the birth of the data markets that sell personal information, individuals' privacy is of utmost importance. The classical response is anonymization, i.e., sanitizing the information that can directly or indirectly allow users' re-identification. The most popular solution in the literature is the k-anonymity. However, it is hard to achieve k-anonymity on a continuous stream of data, as well as when the number of dimensions becomes high.In this paper, we propose a novel anonymization property called z-anonymity. Differently from k-anonymity, it can be achieved with zero-delay on data streams and it is well suited for high dimensional data. The idea at the base of z-anonymity is to release an attribute (an atomic information) about a user only if at least z - 1 other users have presented the same attribute in a past time window. z-anonymity is weaker than k-anonymity since it does not work on the combinations of attributes, but treats them individually. In this paper, we present a probabilistic framework to map the z-anonymity into the k-anonymity property. Our results show that a proper choice of the z-anonymity parameters allows the data curator to likely obtain a k-anonymized dataset, with a precisely measurable probability. We also evaluate a real use case, in which we consider the website visits of a population of users and show that z-anonymity can work in practice for obtaining the k-anonymity too

    Practical anonymization for data streams: z-anonymity and relation with k-anonymity

    Get PDF
    With the advent of big data and the emergence of data markets, preserving individuals’ privacy has become of utmost importance. The classical response to this need is anonymization, i.e., sanitizing the information that, directly or indirectly, can allow users’ re-identification. Among the various approaches, -anonymity provides a simple and easy-to-understand protection. However, -anonymity is challenging to achieve in a continuous stream of data and scales poorly when the number of attributes becomes high. In this paper, we study a novel anonymization property called -anonymity that we explicitly design to deal with data streams, i.e., where the decision to publish a given attribute (atomic information) is made in real time. The idea at the base of -anonymity is to release such attribute about a user only if at least other users have exposed the same attribute in a past time window. Depending on the value of , the output stream results -anonymized with a certain probability. To this end, we present a probabilistic model to map the -anonymity into the -anonymity property. The model is not only helpful in studying the -anonymity property, but also general enough to evaluate the probability of achieving -anonymity in data streams, resulting in a generic contribution

    Network Performance Improvements for Low-Latency Anonymity Networks

    Get PDF
    While advances to the Internet have enabled users to easily interact and exchange information online, they have also created several opportunities for adversaries to prey on users’ private information. Whether the motivation for data collection is commercial, where service providers sell data for marketers, or political, where a government censors, blocks and tracks its people, or even personal, for cyberstalking purposes, there is no doubt that the consequences of personal information leaks can be severe. Low-latency anonymity networks have thus emerged as a solution to allow people to surf the Internet without the fear of revealing their identities or locations. In order to provide anonymity to users, anonymity networks route users’ traffic through several intermediate relays, which causes unavoidable extra delays. However, although these networks have been originally designed to support interactive applications, due to a variety of design weaknesses, these networks offer anonymity at the expense of further intolerable performance costs, which disincentivize users from adopting these systems. In this thesis, we seek to improve the network performance of low-latency anonymity networks while maintaining the anonymity guarantees they provide to users today. As an experimentation platform, we use Tor, the most widely used privacy-preserving network that empowers people with low-latency anonymous online access. Since its introduction in 2003, Tor has successfully evolved to support hundreds of thousands of users using thousands of volunteer-operated routers run all around the world. Incidents of sudden increases in Tor’s usage, coinciding with global political events, confirm the importance of the Tor network for Internet users today. We identify four key contributors to the performance problems in low-latency anonymity networks, exemplified by Tor, that significantly impact the experience of low-latency application users. We first consider the lack of resources problem due to the resource-constrained routers, and propose multipath routing and traffic splitting to increase throughput and improve load balancing. Second, we explore the poor quality of service problem, which is exacerbated by the existence of bandwidth-consuming greedy applications in the network. We propose online traffic classification as a means of enabling quality of service for every traffic class. Next, we investigate the poor transport design problem and propose a new transport layer design for anonymous communication networks which addresses the drawbacks of previous proposals. Finally, we address the problem of the lack of congestion control by proposing an ATM-style credit-based hop-by-hop flow control algorithm which caps the queue sizes and allows all relays to react to congestion in the network. Our experimental results confirm the significant performance benefits that can be obtained using our privacy-preserving approaches

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems
    corecore