15 research outputs found

    Adaptive Caching of Distributed Components

    Get PDF
    Die Zugriffslokalität referenzierter Daten ist eine wichtige Eigenschaft verteilter Anwendungen. Lokales Zwischenspeichern abgefragter entfernter Daten (Caching) wird vielfach bei der Entwicklung solcher Anwendungen eingesetzt, um diese Eigenschaft auszunutzen. Anschliessende Zugriffe auf diese Daten können so beschleunigt werden, indem sie aus dem lokalen Zwischenspeicher bedient werden. Gegenwärtige Middleware-Architekturen bieten dem Anwendungsprogrammierer jedoch kaum Unterstützung für diesen nicht-funktionalen Aspekt. Die vorliegende Arbeit versucht deshalb, Caching als separaten, konfigurierbaren Middleware-Dienst auszulagern. Durch die Einbindung in den Softwareentwicklungsprozess wird die frühzeitige Modellierung und spätere Wiederverwendung caching-spezifischer Metadaten gewährleistet. Zur Laufzeit kann sich das entwickelte System außerdem bezüglich der Cachebarkeit von Daten adaptiv an geändertes Nutzungsverhalten anpassen.Locality of reference is an important property of distributed applications. Caching is typically employed during the development of such applications to exploit this property by locally storing queried data: Subsequent accesses can be accelerated by serving their results immediately form the local store. Current middleware architectures however hardly support this non-functional aspect. The thesis at hand thus tries outsource caching as a separate, configurable middleware service. Integration into the software development lifecycle provides for early capturing, modeling, and later reuse of cachingrelated metadata. At runtime, the implemented system can adapt to caching access characteristics with respect to data cacheability properties, thus healing misconfigurations and optimizing itself to an appropriate configuration. Speculative prefetching of data probably queried in the immediate future complements the presented approach

    An Autonomic Cross-Platform Operating Environment for On-Demand Internet Computing

    Get PDF
    The Internet has evolved into a global and ubiquitous communication medium interconnecting powerful application servers, diverse desktop computers and mobile notebooks. Along with recent developments in computer technology, such as the convergence of computing and communication devices, the way how people use computers and the Internet has changed people´s working habits and has led to new application scenarios. On the one hand, pervasive computing, ubiquitous computing and nomadic computing become more and more important since different computing devices like PDAs and notebooks may be used concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous availability and pervasive interconnection of computing systems have fostered various trends towards the dynamic utilization and spontaneous collaboration of available remote computing resources, which are addressed by approaches like utility computing, grid computing, cloud computing and public computing. From a general point of view, the common objective of this development is the use of Internet applications on demand, i.e. applications that are not installed in advance by a platform administrator but are dynamically deployed and run as they are requested by the application user. The heterogeneous and unmanaged nature of the Internet represents a major challenge for the on demand use of custom Internet applications across heterogeneous hardware platforms, operating systems and network environments. Promising remedies are autonomic computing systems that are supposed to maintain themselves without particular user or application intervention. In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad hoc execution migration. The approach is based on an integration middleware called crossware that does not replace existing middleware but operates as a self-managing mediator between diverse application requirements and heterogeneous platform configurations. A Java implementation of the Crossware Development Kit (XDK) is presented, followed by the description of the On Demand Internet Computing System (ODIX). The feasibility of the approach is shown by the implementation of an Internet Application Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of the approach is discussed with respect to the support of ODIC

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    Refactoring of Security Antipatterns in Distributed Java Components

    Get PDF
    The importance of JAVA as a programming and execution environment has grown steadily over the past decade. Furthermore, the IT industry has adapted JAVA as a major building block for the creation of new middleware as well as a technology facilitating the migration of existing applications towards web-driven environments. Parallel in time, the role of security in distributed environments has gained attention, as a large amount of middleware applications has replaced enterprise-level mainframe systems. The protection of confidentiality, integrity and availability are therefore critical for the market success of a product. The vulnerability level of every product is determined by the weakest embedded component, and selling vulnerable products can cause enormous economic damage to software vendors. An important goal of this work is to create the awareness that the usage of a programming language, which is designed as being secure, is not sufficient to create secure and trustworthy distributed applications. Moreover, the incorporation of the threat model of the programming language improves the risk analysis by allowing a better definition of the attack surface of the application. The evolution of a programming language leads towards common patterns for solutions for recurring quality aspects. Suboptimal solutions, also known as ´antipatterns´, are typical causes for quality weaknesses such as security vulnerabilities. Moreover, the exposure to a specific environment is an important parameter for threat analysis, as code considered secure in a specific scenario can cause unexpected risks when switching the environment. Antipatterns are a well-established means on the abstractional level of system modeling to inform about the effects of incomplete solutions, which are also important in the later stages of the software development process. Especially on the implementation level, we see a deficit of helpful examples, that would give programmers a better and holistic understanding. In our basic assumption, we link the missing experience of programmers regarding the security properties of patterns within their code to the creation of software vulnerabilities. Traditional software development models focus on security properties only on the meta layer. To transfer these efficiently to the practical level, we provide a three-stage approach: First, we focus on typical security problems within JAVA applications, and develop a standardized catalogue of ´antipatterns´ with examples from standard software products. Detecting and avoiding these antipatterns positively influences software quality. We therefore focus, as second element of our methodology, on possible enhancements to common models for the software development process. These help to control and identify the occurrence of antipatterns during development activities, i. e. during the coding phase and during the phase of component assembly, integrating one´s own and third party code. Within the third part, and emphasizing the practical focus of this research, we implement prototypical tools for support of the software development phase. The practical findings of this research helped to enhance the security of the standard JAVA platforms and JEE frameworks. We verified the relevance of our methods and tools by applying these to standard software products leading to a measurable reduction of vulnerabilities and an information exchange with middleware vendors (Sun Microsystems, JBoss) targeting runtime security. Our goal is to enable software architects and software developers developing end-user applications to apply our findings with embedded standard components on their environments. From a high-level perspective, software architects profit from this work through the projection of the quality-of-service goals to protection details. This supports their task of deriving security requirements when selecting standard components. In order to give implementation-near practitioners a helpful starting point to benefit from our research we provide tools and case-studies to achieve security improvements within their own code base.Die Bedeutung der Programmiersprache JAVA als Baustein für Softwareentwicklungs- und Produktionsinfrastrukturen ist im letzten Jahrzehnt stetig gestiegen. JAVA hat sich als bedeutender Baustein für die Programmierung von Middleware-Lösungen etabliert. Ebenfalls evident ist die Verwendung von JAVA-Technologien zur Migration von existierenden Arbeitsplatz-Anwendungen hin zu webbasierten Einsatzszenarien. Parallel zu dieser Entwicklung hat sich die Rolle der IT-Sicherheit nicht zuletzt aufgrund der Verdrängung von mainframe-basierten Systemen hin zu verteilten Umgebungen verstärkt. Der Schutz von Vertraulichkeit, Integrität und Verfügbarkeit ist seit einigen Jahren ein kritisches Alleinstellungsmerkmal für den Markterfolg von Produkten. Verwundbarkeiten in Produkten wirken mittlerweile indirekt über kundenseitigen Vertrauensverlust negativ auf den wirtschaftlichen Erfolg der Softwarehersteller, zumal der Sicherheitsgrad eines Systems durch die verwundbarste Komponente bestimmt wird. Ein zentrales Ziel dieser Arbeit ist die Erkenntnis zu vermitteln, dass die alleinige Nutzung einer als ´sicher´ eingestuften Programmiersprache nicht als alleinige Grundlage zur Erstellung von sicheren und vertrauenswürdigen Anwendungen ausreicht. Vielmehr führt die Einbeziehung des Bedrohungsmodells der Programmiersprache zu einer verbesserten Risikobetrachtung, da die Angriffsfläche einer Anwendung detaillierter beschreibbar wird. Die Entwicklung und fortschreitende Akzeptanz einer Programmiersprache führt zu einer Verbreitung von allgemein anerkannten Lösungsmustern zur Erfüllung wiederkehrender Qualitätsanforderungen. Im Bereich der Dienstqualitäten fördern ´Gegenmuster´, d.h. nichtoptimale Lösungen, die Entstehung von Strukturschwächen, welche in der Domäne der IT-Sicherheit ´Verwundbarkeiten´ genannt werden. Des Weiteren ist die Einsatzumgebung einer Anwendung eine wichtige Kenngröße, um eine Bedrohungsanalyse durchzuführen, denn je nach Beschaffenheit der Bedrohungen im Zielszenario kann eine bestimmte Benutzeraktion eine Bedrohung darstellen, aber auch einen erwarteten Anwendungsfall charakterisieren. Während auf der Modellierungsebene ein breites Angebot von Beispielen zur Umsetzung von Sicherheitsmustern besteht, fehlt es den Programmierern auf der Implementierungsebene häufig an ganzheitlichem Verständnis. Dieses kann durch Beispiele, welche die Auswirkungen der Verwendung von ´Gegenmustern´ illustrieren, vermittelt werden. Unsere Kernannahme besteht darin, dass fehlende Erfahrung der Programmierer bzgl. der Sicherheitsrelevanz bei der Wahl von Implementierungsmustern zur Entstehung von Verwundbarkeiten führt. Bei der Vermittlung herkömmlicher Software-Entwicklungsmodelle wird die Integration von praktischen Ansätzen zur Umsetzung von Sicherheitsanforderungen zumeist nur in Meta-Modellen adressiert. Zur Erweiterung des Wirkungsgrades auf die praktische Ebene wird ein dreistufiger Ansatz präsentiert. Im ersten Teil stellen wir typische Sicherheitsprobleme von JAVA-Anwendungen in den Mittelpunkt der Betrachtung, und entwickeln einen standardisierten Katalog dieser ´Gegenmuster´. Die Relevanz der einzelnen Muster wird durch die Untersuchung des Auftretens dieser in Standardprodukten verifiziert. Der zweite Untersuchungsbereich widmet sich der Integration von Vorgehensweisen zur Identifikation und Vermeidung der ´Sicherheits-Gegenmuster´ innerhalb des Software-Entwicklungsprozesses. Hierfür werden zum einen Ansätze für die Analyse und Verbesserung von Implementierungsergebnissen zur Verfügung gestellt. Zum anderen wird, induziert durch die verbreitete Nutzung von Fremdkomponenten, die arbeitsintensive Auslieferungsphase mit einem Ansatz zur Erstellung ganzheitlicher Sicherheitsrichtlinien versorgt. Da bei dieser Arbeit die praktische Verwendbarkeit der Ergebnisse eine zentrale Anforderung darstellt, wird diese durch prototypische Werkzeuge und nachvollziehbare Beispiele in einer dritten Perspektive unterstützt. Die Relevanz der Anwendung der entwickelten Methoden und Werkzeuge auf Standardprodukte zeigt sich durch die im Laufe der Forschungsarbeit entdeckten Sicherheitsdefizite. Die Rückmeldung bei führenden Middleware-Herstellern (Sun Microsystems, JBoss) hat durch gegenseitigen Erfahrungsaustausch im Laufe dieser Forschungsarbeit zu einer messbaren Verringerung der Verwundbarkeit ihrer Middleware-Produkte geführt. Neben den erreichten positiven Auswirkungen bei den Herstellern der Basiskomponenten sollen Erfahrungen auch an die Architekten und Entwickler von Endprodukten, welche Standardkomponenten direkt oder indirekt nutzen, weitergereicht werden. Um auch dem praktisch interessierten Leser einen möglichst einfachen Einstieg zu bieten, stehen die Werkzeuge mit Hilfe von Fallstudien in einem praktischen Gesamtzusammenhang. Die für das Tiefenverständnis notwendigen Theoriebestandteile bieten dem Software-Architekten die Möglichkeit sicherheitsrelevante Auswirkungen einer Komponentenauswahl frühzeitig zu erkennen und bei der Systemgestaltung zu nutzen

    Interoperability of Enterprise Software and Applications

    Get PDF

    Automatic Generation of Distributed Runtime Infrastructure for Internet of Things

    Get PDF
    Ph. D. ThesisThe Internet of Things (IoT) represents a network of connected devices that are able to cooperate and interact with each other in order to reach a particular goal. To attain this, the devices are equipped with identifying, sensing, networking and processing capabilities. Cloud computing, on the other hand, is the delivering of on-demand computing services – from applications, to storage, to processing power – typically over the internet. Clouds bring a number of advantages to distributed computing because of highly available pool of virtualized computing resource. Due to the large number of connected devices, real-world IoT use cases may generate overwhelmingly large amounts of data. This prompts the use of cloud resources for processing, storage and analysis of the data. Therefore, a typical IoT system comprises of a front-end (devices that collect and transmit data), and back-end – typically distributed Data Stream Management Systems (DSMSs) deployed on the cloud infrastructure, for data processing and analysis. Increasingly, new IoT devices are being manufactured to provide limited execution environment on top of their data sensing and transmitting capabilities. This consequently demands a change in the way data is being processed in a typical IoT-cloud setup. The traditional, centralised cloud-based data processing model – where IoT devices are used only for data collection – does not provide an efficient utilisation of all available resources. In addition, the fundamental requirements of real-time data processing such as short response time may not always be met. This prompts a new processing model which is based on decentralising the data processing tasks. The new decentralised architectural pattern allows some parts of data streaming computation to be executed directly on edge devices – closer to where the data is collected. Extending the processing capabilities to the IoT devices increases the robustness of applications as well as reduces the communication overhead between different components of an IoT system. However, this new pattern poses new challenges in the development, deployment and management of IoT applications. Firstly, there exists a large resource gap between the two parts of a typical IoT system (i.e. clouds and IoT devices); hence, prompting a new approach for IoT applications deployment and management. Secondly, the new decentralised approach necessitates the deployment of DSMS on distributed clusters of heterogeneous nodes resulting in unpredictable runtime performance and complex fault characteristics. Lastly, the environment where DSMSs are deployed is very dynamic due to user or device mobility, workload variation, and resource availability. In this thesis we present solutions to address the aforementioned challenges. We investigate how a high-level description of a data streaming computation can be used to automatically generate a distributed runtime infrastructure for Internet of Things. Subsequently, we develop a deployment and management system capable of distributing different operators of a data streaming computation onto different IoT gateway devices and cloud infrastructure. To address the other challenges, we propose a non-intrusive approach for performance evaluation of DSMSs and present a protocol and a set of algorithms for dynamic migration of stateful data stream operators. To improve our migration approach, we provide an optimisation technique which provides minimal application downtime and improves the accuracy of a data stream computation

    Network-Integrated Multimedia Middleware, Services, and Applications

    Get PDF
    Today, there is a strong trend towards networked multimedia devices. However, common multimedia software architectures are restricted to perform all processing on a single system. Available software infrastructures for distributed computing — commonly referred to as middleware — only partly provide the facilities needed for supporting multimedia in distributed and dynamic environments. Approaches from the research community only focus on specific aspects and do not achieve the coverage needed for a full-featured multimedia middleware solution. The Network-Integrated Multimedia Middleware (NMM) presented in this thesis considers the network as an integral part. Despite the inherent heterogeneity of present networking and device technologies, the architecture allows to extend control and cooperation to the network and enables the development of distributed multimedia applications that transparently use local and remote components in combination. The base architecture of this middleware is augmented by several middleware services that especially aim at providing additional support for developing complex applications that involve mobile users and devices. To this end, previously not available services and corresponding abstractions are proposed, realized, and evaluated. The performance and applicability of the developed middleware and its additional services are demonstrated by describing different realized application scenarios.Eine wachsende Anzahl von Multimedia-Geraeten verfuegt heute bereits ueber Netzwerkschnittstellen. Verfueugbare Multimedia Software-Architekturen beschraeanken jedoch die gesamte Datenverarbeitung auf ein einzelnes System. Verbreitete Software-Infrastrukturen fuer Verteilte Systeme — ueblicherweise Middleware genannt — bieten nur teilweise die Eigenschaften, die fuer die Multimedia-Datenverarbeitung in vernetzten und dynamischen Umgebungen benoetigt werden. Ansaetze aus der Forschung behandeln nur spezielle Teilaspekte und erreichen deshalb nicht den Funktionsumfang einer vollwertigen Middleware fuer Multimedia. Die in dieser Arbeit beschriebene Netzwerk-Integrierte Multimedia Middleware (NMM) betrachtet das Netzwerk als integralen Bestandteil. Die Architektur erlaubt trotz der inhaerenten Heterogenitaet der vorhandenen Netzwerk- und Geraetetechnologie die Kontrolle und das Zusammenspiel von Systemen auf das Netzwerk auszuweiten. Dies ermoeglicht die Entwicklung verteilter Multimedia-Anwendungen, die transparent lokale und entfernte Komponenten zusammen einsetzen. Die Kernarchitektur dieser Middleware wird durch verschiedene Dienste erweitert, die speziell die Realisierung komplexer Anwendungsszenarien mitmobilen Geraeten und Benutzern unterstuetzt. Insbesondere werden neue, bisher nicht vorhandene Middleware-Dienste und zugehoerige Abstraktionen vorgeschlagen, realisiert und evaluiert. Anhand verschiedener Anwendungsszenarien wird die Leistungfaehigkeit, die Effizienz und die praktische Relevanz der entwickelten Middleware und der ergaenzenden Dienste demonstriert

    Model-Based Run-time Verification of Software Components by Integrating OCL into Treaty

    Get PDF
    Model Driven Development is used to improve software quality and efficiency by automatically transforming abstract and formal models into software implementations. This is particularly sensible if the model’s integrity can be proven formally and is preserved during the model’s transformation. A standard to specify software model integrity is the Object Constraint Language (OCL). Another topic of research is the dynamic development of software components, enabling software system composition at component run-time. As a consequence, the system’s verification must be realized during system run-time (and not during transformation or compile time). Many established verification techniques cannot be used for run-time verification. A method to enable model-based run-time verification will be developed during this work. How OCL constraints can be transformed into executable software artifacts and how they can be used in the component-based system Treaty will be the major task of this diploma thesis.Modellgetriebene Entwicklung dient der Verbesserung von Qualität und Effizienz in der Software-Entwicklung durch Automatisierung der notwendigen Transformationen von abstrakten bzw. formalen Modellen bis zur Implementierung. Dies ist insbesondere dann sinnvoll, wenn die Integrität der ursprünglichen Modelle formal bewiesen werden kann und durch die Transformation gewährleistet wird. Ein Standard zur Spezifikation der Integrität von Softwaremodellen ist die Object Constraint Language (OCL). Eine weitere Forschungsrichtung im Software-Engineering ist die Entwicklung von dynamischen Komponenten-Modellen, die die Komposition von Softwaresystemen im laufenden Betrieb ermöglichen. Dies bedeutet, dass die Systemverifikation im laufenden Betrieb realisiert werden muss. Die meisten der etablierten Verifikationstechniken sind dazu nicht geeignet. In der Diplomarbeit soll ausgehend von diesem Stand der Technik eine Methode zur modellbasierten Verifikation zur Laufzeit entwickelt werden. Insbesondere soll untersucht werden, wie OCL-Constraints zur Laufzeit in ausführbare Software-Artefakte übersetzt und in dem komponentenbasierten System Treaty verwendet werden können

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed
    corecore