3,180 research outputs found

    Covariance Eigenvector Sparsity for Compression and Denoising

    Full text link
    Sparsity in the eigenvectors of signal covariance matrices is exploited in this paper for compression and denoising. Dimensionality reduction (DR) and quantization modules present in many practical compression schemes such as transform codecs, are designed to capitalize on this form of sparsity and achieve improved reconstruction performance compared to existing sparsity-agnostic codecs. Using training data that may be noisy a novel sparsity-aware linear DR scheme is developed to fully exploit sparsity in the covariance eigenvectors and form noise-resilient estimates of the principal covariance eigenbasis. Sparsity is effected via norm-one regularization, and the associated minimization problems are solved using computationally efficient coordinate descent iterations. The resulting eigenspace estimator is shown capable of identifying a subset of the unknown support of the eigenspace basis vectors even when the observation noise covariance matrix is unknown, as long as the noise power is sufficiently low. It is proved that the sparsity-aware estimator is asymptotically normal, and the probability to correctly identify the signal subspace basis support approaches one, as the number of training data grows large. Simulations using synthetic data and images, corroborate that the proposed algorithms achieve improved reconstruction quality relative to alternatives.Comment: IEEE Transcations on Signal Processing, 2012 (to appear

    Low-Complexity OFDM Spectral Precoding

    Full text link
    This paper proposes a new large-scale mask-compliant spectral precoder (LS-MSP) for orthogonal frequency division multiplexing systems. In this paper, we first consider a previously proposed mask-compliant spectral precoding scheme that utilizes a generic convex optimization solver which suffers from high computational complexity, notably in large-scale systems. To mitigate the complexity of computing the LS-MSP, we propose a divide-and-conquer approach that breaks the original problem into smaller rank 1 quadratic-constraint problems and each small problem yields closed-form solution. Based on these solutions, we develop three specialized first-order low-complexity algorithms, based on 1) projection on convex sets and 2) the alternating direction method of multipliers. We also develop an algorithm that capitalizes on the closed-form solutions for the rank 1 quadratic constraints, which is referred to as 3) semi-analytical spectral precoding. Numerical results show that the proposed LS-MSP techniques outperform previously proposed techniques in terms of the computational burden while complying with the spectrum mask. The results also indicate that 3) typically needs 3 iterations to achieve similar results as 1) and 2) at the expense of a slightly increased computational complexity.Comment: Accepted in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 201

    A Unified Framework for Sparse Non-Negative Least Squares using Multiplicative Updates and the Non-Negative Matrix Factorization Problem

    Full text link
    We study the sparse non-negative least squares (S-NNLS) problem. S-NNLS occurs naturally in a wide variety of applications where an unknown, non-negative quantity must be recovered from linear measurements. We present a unified framework for S-NNLS based on a rectified power exponential scale mixture prior on the sparse codes. We show that the proposed framework encompasses a large class of S-NNLS algorithms and provide a computationally efficient inference procedure based on multiplicative update rules. Such update rules are convenient for solving large sets of S-NNLS problems simultaneously, which is required in contexts like sparse non-negative matrix factorization (S-NMF). We provide theoretical justification for the proposed approach by showing that the local minima of the objective function being optimized are sparse and the S-NNLS algorithms presented are guaranteed to converge to a set of stationary points of the objective function. We then extend our framework to S-NMF, showing that our framework leads to many well known S-NMF algorithms under specific choices of prior and providing a guarantee that a popular subclass of the proposed algorithms converges to a set of stationary points of the objective function. Finally, we study the performance of the proposed approaches on synthetic and real-world data.Comment: To appear in Signal Processin

    BPGrad: Towards Global Optimality in Deep Learning via Branch and Pruning

    Full text link
    Understanding the global optimality in deep learning (DL) has been attracting more and more attention recently. Conventional DL solvers, however, have not been developed intentionally to seek for such global optimality. In this paper we propose a novel approximation algorithm, BPGrad, towards optimizing deep models globally via branch and pruning. Our BPGrad algorithm is based on the assumption of Lipschitz continuity in DL, and as a result it can adaptively determine the step size for current gradient given the history of previous updates, wherein theoretically no smaller steps can achieve the global optimality. We prove that, by repeating such branch-and-pruning procedure, we can locate the global optimality within finite iterations. Empirically an efficient solver based on BPGrad for DL is proposed as well, and it outperforms conventional DL solvers such as Adagrad, Adadelta, RMSProp, and Adam in the tasks of object recognition, detection, and segmentation
    corecore