3,225 research outputs found

    Model-driven transformation and validation of adaptive educational hypermedia using CAVIAr

    Get PDF
    Authoring of Adaptive Educational Hypermedia is a complex activity requiring the combination of a range of design and validation techniques.We demonstrate how Adaptive Educational Hypermedia can be transformed into CAVIAr courseware validation models allowing for its validation. The model-based representation and analysis of different concerns and model-based mappings and transformations are key contributors to this integrated solution. We illustrate the benefits of Model Driven Engineering methodologies that allow for interoperability between CAVIAr and a well known Adaptive Educational Hypermedia framework. By allowing for the validation of Adaptive Educational Hypermedia, the course creator limits the risk of pedagogical problems in migrating to Adaptive Educational Hypermedia from static courseware

    Continuous use of authoring for adaptive educational hypermedia : a long-term case study

    Get PDF
    Adaptive educational hypermedia allows lessons to be personalized according to the needs of the learner. However, to achieve this, content must be split into stand-alone fragments that can be processed by a course personalization engine. Authoring content for this process is still a difficult activity, and it is essential for the popularization of adaptive educational hypermedia that authoring is simplified, so that the various stakeholders in the educational process, students, teachers, administrators, etc. can easily work with such systems. Thus, real-world testing with these stakeholders is essential. In this paper we describe recent extensions and improvements we have implemented in the My Online Teacher MOT3.0 adaptation authoring tool set, based on an initial set of short-term evaluations, and then focus on describing a long-term usage and assessment of the system

    Transforming a linear module into an adaptive one : tackling the challenge

    Get PDF
    Every learner is fundamentally different. However, few courses are delivered in a way that is tailored to the specific needs of each student. Delivery systems for adaptive educational hypermedia have been extensively researched and found promising. Still, authoring of adaptive courses remains a challenge. In prior research, we have built an adaptive hypermedia authoring system, MOT3.0. The main focus was on enhancing the type of functionality that allows the non-technical author, to efficiently and effectively use such a tool. Here we show how teachers can start from existing course material and transform it into an adaptive course, catering for various learners. We also show how this apparent simplicity still allows for building of flexible and complex adaptation, and describe an evaluation with course authors

    Automatic authoring in the LAOS AHS authoring model

    Get PDF
    In this paper, we extend the automatic authoring techniques that can be built based on the LAOS model, a five-layer AHS authoring model. As the LAOS model itself is fairly complex, although information-rich, an adaptive hypermedia author needs a lot of system support to be able to populate all its levels with the corresponding information. Therefore, such automatic authoring techniques, which are actually automatic transformation (and interpretation) rules between the different layers of the model, have been designed. These automatic rules represent, in the area of adaptive systems, designer-goal oriented adaptation techniques. They should represent the goal of the designer that is authoring the hypermedia (such as the pedagogical goal in educational adaptive hypermedia). Therefore, this paper represents yet another step towards an adaptive hypermedia (or adaptive course) that ‘writes itself’. The focus here is on automatic transformation between the domain and a newly introduced goal and constraints model, to show that the effort of introducing this new layer can be minimal

    AHyCo: a Web-Based Adaptive Hypermedia Courseware System

    Get PDF
    Adaptive hypermedia courseware systems resolve the problem of users’ disorientation in hyperspace through the adaptive navigation and presentation support. We describe the AHyCo (Adaptive Hypermedia Courseware) - an adaptive Web-based educational system for creation and reuse of adaptive courseware with emphasis on adaptive navigation support and lessons sequencing. The proposed model consists of the domain model, the student model, and the adaptive model. The system is composed of two environments: the authoring environment and the learning environment

    WiBAF into a CMS: Personalization in learning environments made easy

    Get PDF
    Adaptivity has proven successful in reducing navigation and comprehension problems in hypermedia documents. Authoring of adaptive hypermedia documents and especially of the adaptivity in these documents has been problematic or at least labour intensive throughout AH history. This paper shows how the integration of a CMS with an adaptive framework greatly simplifies the inclusion of personalization in existing educational applications. It does this within the context of European project Autism&Uni that uses adaptive hypermedia to offer information for students transitioning from high school to university, especially to cater for students on the autism spectrum as well as for non-autistic students. The use of our Within Browser adaptation framework (WiBAF) reduces privacy concerns because the user model is stored on the end-user's machine, and eliminates performance issues that currently prevent the adoption of adaptivity in MOOC platforms by having the adaptation performed on the end-user's machine as well (within the browser). Authoring of adaptive applications within the educational domain with the system proposed was tried out with first year students from the Design-Based Learning Hypermedia course at the Eindhoven University of Technology (TU/e) to gather feedback on the problems they faced with the platform

    Design of the CAM model and authoring tool

    Get PDF
    Students benefit from personalised attention; however, often teachers are unable to provide this. An Adaptive Hypermedia (AH) system can offer a richer learning experience in an educational environment, by giving personalised attention to students. On-line courses are becoming increasingly popular by means of Learning Management Systems (LSM). The aim of the GRAPPLE project is to integrate an AH with major LMS, to provide an environment that delivers personalised courses in a LMS interface. However, designing an AH is a much more complex and time-consuming task, than creating a course in a LMS. Several models and systems were developed previously, but the (re)-usability by educational authors of the adaptation remains limited. To simplify adaptive behaviour authoring for an educational author, a visual environment was selected as being most intuitive. This paper describes a reference model for authoring in a visual way and introduces an authoring tool based upon this model

    Manual and automatic authoring for adaptive hypermedia

    Get PDF
    Adaptive Hypermedia allows online content to be tailored specifically to the needs of the user. This is particularly valuable in educational systems, where a student might benefit from a learning experience which only displays (or recommends) content that they need to know. Authoring for adaptive systems requires content to be divided into stand-alone fragments which must then be labelled with sufficient pedagogical metadata. Authors must also create a pedagogical strategy that selects the appropriate content depending on (amongst other things) the learner's profile. This authoring process is time-consuming and unfamiliar to most non-technical authors. Therefore, to ensure that students (of all ages, ability level and interests) can benefit from Adaptive Educational Hypermedia, authoring tools need to be usable by a range of educators. The overall aim of this thesis is therefore to identify the ways that this authoring process can be simplified. The research in this thesis describes the changes that were made to the My Online Teacher (MOT) tool in order to address issues such as functionality and usability. The thesis also describes usability and functionality changes that were made to the GRAPPLE Authoring Tool (GAT), which was developed as part of a European FP7 project. These two tools (which utilise different authoring paradigms) were then used within a usability evaluation, allowing the research to draw a comparison between the two toolsets. The thesis also describes how educators can reuse their existing non-adaptive (linear) material (such as presentations and Wiki articles) by importing content into an adaptive authoring system

    Collaborative Authoring of Adaptive Educational Hypermedia by Enriching a Semantic Wiki’s Output

    No full text
    This research is concerned with harnessing collaborative approaches for the authoring of Adaptive Educational Hypermedia (AEH) systems. It involves the enhancement of Semantic Wikis with pedagogy aware features to this end. There are many challenges in understanding how communities of interest can efficiently collaborate for learning content authoring, in introducing pedagogy to the developed knowledge models and in specifying user models for efficient delivery of AEH systems. The contribution of this work will be the development of a model of collaborative authoring which includes domain specification, content elicitation, and definition of pedagogic approach. The proposed model will be implemented in a prototype AEH authoring system that will be tested and evaluated in a formal education context

    Adaptive Web-Based Educational Hypermedia

    Full text link
    This chapter describes recent and ongoing research to automatically personalize a learning experience through adaptive educational hypermedia. The Web had made it possible to give a very large audience access to the same learning material. Rather than offering several versions of learning material about a certain subject, for different types of leaners, adaptive educational hypermedia offers personalized learning material without the need to know a detailed classification of users before starting the learning process. We describe different approaches to making a learning experience personalized, all using adaptive hypermedia technology. We include research on authoring for adaptive learning material (the AIMS and MOT projects) and research on modeling adaptive educational applications (the LAOS project). We also cover some of our ongoing work on the AHA! system, which has been used mostly for educational hypermedia but has the potential to be used in very different application areas as wel
    corecore