2,918 research outputs found

    Pseudorehearsal in actor-critic agents with neural network function approximation

    Full text link
    Catastrophic forgetting has a significant negative impact in reinforcement learning. The purpose of this study is to investigate how pseudorehearsal can change performance of an actor-critic agent with neural-network function approximation. We tested agent in a pole balancing task and compared different pseudorehearsal approaches. We have found that pseudorehearsal can assist learning and decrease forgetting

    Pseudorehearsal in actor-critic agents with neural network function approximation

    Get PDF
    Catastrophic forgetting has a significant negative impact in reinforcement learning. The purpose of this study is to investigate how pseudorehearsal can change performance of an actor-critic agent with neural-network function approximation. We tested agent in a pole balancing task and compared different pseudorehearsal approaches. We have found that pseudorehearsal can assist learning and decrease forgetting

    AR3n: A Reinforcement Learning-based Assist-As-Needed Controller for Robotic Rehabilitation

    Full text link
    In this paper, we present AR3n (pronounced as Aaron), an assist-as-needed (AAN) controller that utilizes reinforcement learning to supply adaptive assistance during a robot assisted handwriting rehabilitation task. Unlike previous AAN controllers, our method does not rely on patient specific controller parameters or physical models. We propose the use of a virtual patient model to generalize AR3n across multiple subjects. The system modulates robotic assistance in realtime based on a subject's tracking error, while minimizing the amount of robotic assistance. The controller is experimentally validated through a set of simulations and human subject experiments. Finally, a comparative study with a traditional rule-based controller is conducted to analyze differences in assistance mechanisms of the two controllers.Comment: 8 pages, 9 figures, IEEE RA-

    Adaptive and extendable control of unmanned surface vehicle formations using distributed deep reinforcement learning

    Get PDF
    Future ocean exploration will be dominated by a large-scale deployment of marine robots such as unmanned surface vehicles (USVs). Without the involvement of human operators, USVs exploit oceans, especially the complex marine environments, in an unprecedented way with an increased mission efficiency. However, current autonomy level of USVs is still limited, and the majority of vessels are being remotely controlled. To address such an issue, artificial intelligence (AI) such as reinforcement learning can effectively equip USVs with high-level intelligence and consequently achieve full autonomous operation. Also, by adopting the concept of multi-agent intelligence, future trend of USV operations is to use them as a formation fleet. Current researches in USV formation control are largely based upon classical control theories such as PID, backstepping and model predictive control methods with the impact by using advanced AI technologies unclear. This paper, therefore, paves the way in this area by proposing a distributed deep reinforcement learning algorithm for USV formations. More importantly, using the proposed algorithm USV formations can learn two critical abilities, i.e. adaptability and extendibility that enable formations to arbitrarily increase the number of USVs or change formation shapes. The effectiveness of algorithms has been verified and validated through a number of computer-based simulations

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    corecore