434 research outputs found

    Iterative turbo beamforming for OFDM based hybrid terrestrial-satellite mobile system

    Get PDF
    In the context of orthogonal frequency division multiplexing (OFDM)-based systems, pilot-based beamforming (BF) exhibits a high degree of sensitivity to the pilot sub-carriers. Increasing the number of reference pilots significantly improves BF performance as well as system performance. However, this increase comes at the cost of data throughput, which inevitably shrinks due to transmission of additional pilots. Hence an approach where reference signals available to the BF process can be increased without transmitting additional pilots can exhibit superior system performance without compromising throughput. Thus, the authors present a novel three-stage iterative turbo beamforming (ITBF) algorithm for an OFDM-based hybrid terrestrial-satellite mobile system, which utilises both pilots and data to perform interference mitigation. Data sub-carriers are utilised as virtual reference signals in the BF process. Results show that when compared to non-iterative conventional BF, the proposed ITBF exhibits bit error rate gain of up to 2.5 dB with only one iteration

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Noncooperative and Cooperative Transmission Schemes with Precoding and Beamforming

    Get PDF
    The next generation mobile networks are expected to provide multimedia applications with a high quality of service. On the other hand, interference among multiple base stations (BS) that co-exist in the same location limits the capacity of wireless networks. In conventional wireless networks, the base stations do not cooperate with each other. The BSs transmit individually to their respective mobile stations (MS) and treat the transmission from other BSs as interference. An alternative to this structure is a network cooperation structure. Here, BSs cooperate with other BSs to simultaneously transmit to their respective MSs using the same frequency band at a given time slot. By doing this, we significantly increase the capacity of the networks. This thesis presents novel research results on a noncooperative transmission scheme and a cooperative transmission scheme for multi-user multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM). We first consider the performance limit of a noncooperative transmission scheme. Here, we propose a method to reduce the interference and increase the throughput of orthogonal frequency division multiplexing (OFDM) systems in co-working wireless local area networks (WLANs) by using joint adaptive multiple antennas(AMA) and adaptive modulation (AM) with acknowledgement (ACK) Eigen-steering. The calculation of AMA and AM are performed at the receiver. The AMA is used to suppress interference and to maximize the signal-to-interference-plus-noise ratio (SINR). The AM scheme is used to allocate OFDM sub-carriers, power, and modulation mode subject to the constraints of power, discrete modulation, and the bit error rate (BER). The transmit weights, the allocation of power, and the allocation of sub-carriers are obtained at the transmitter using ACK Eigen-steering. The derivations of AMA, AM, and ACK Eigen-steering are shown. The performance of joint AMA and AM for various AMA configurations is evaluated through the simulations of BER and spectral efficiency (SE) against SIR. To improve the performance of the system further, we propose a practical cooperative transmission scheme to mitigate against the interference in co-working WLANs. Here, we consider a network coordination among BSs. We employ Tomlinson Harashima precoding (THP), joint transmit-receive beamforming based on SINR (signal-to-interference-plus-noise-ratio) maximization, and an adaptive precoding order to eliminate co-working interference and achieve bit error rate (BER) fairness among different users. We also consider the design of the system when partial channel state information (CSI) (where each user only knows its own CSI) and full CSI (where each user knows CSI of all users) are available at the receiver respectively. We prove analytically and by simulation that the performance of our proposed scheme will not be degraded under partial CSI. The simulation results show that the proposed scheme considerably outperforms both the existing noncooperative and cooperative transmission schemes. A method to design a spectrally efficient cooperative downlink transmission scheme employing precoding and beamforming is also proposed. The algorithm eliminates the interference and achieves symbol error rate (SER) fairness among different users. To eliminate the interference, Tomlinson Harashima precoding (THP) is used to cancel part of the interference while the transmit-receive antenna weights cancel the remaining one. A new novel iterative method is applied to generate the transmit-receive antenna weights. To achieve SER fairness among different users and further improve the performance of MIMO systems, we develop algorithms that provide equal SINR across all users and order the users so that the minimum SINR for each user is maximized. The simulation results show that the proposed scheme considerably outperforms existing cooperative transmission schemes in terms of the SER performance and complexity and approaches an interference free performance under the same configuration. We could improve the performance of the proposed interference cancellation further. This is because the proposed interference cancellation does not consider receiver noise when calculating the transmit-receive weight antennas. In addition, the proposed scheme mentioned above is designed specifically for a single-stream multi-user transmission. Here, we employ THP precoding and an iterative method based on the uplink-downlink duality principle to generate the transmit-receive antenna weights. The algorithm provides an equal SINR across all users. A simpler method is then proposed by trading off the complexity with a slight performance degradation. The proposed methods are extended to also work when the receiver does not have complete Channel State Informations (CSIs). A new method of setting the user precoding order, which has a much lower complexity than the VBLAST type ordering scheme but with almost the same performance, is also proposed. The simulation results show that the proposed schemes considerably outperform existing cooperative transmission schemes in terms of SER performance and approach an interference free performance. In all the cooperative transmission schemes proposed above, we use THP to cancel part of the interference. In this thesis, we also consider an alternative approach that bypasses the use of THP. The task of cancelling the interference from other users now lies solely within the transmit-receive antenna weights. We consider multiuser Gaussian broadcast channels with multiple antennas at both transmitter and receivers. An iterative multiple beamforming (IMB) algorithm is proposed, which is flexible in the antenna configuration and performs well in low to moderate data rates. Its capacity and bit error rate performance are compared with the ones achieved by the traditional zero-forcing method

    Noncooperative and Cooperative Transmission Schemes with Precoding and Beamforming

    Get PDF
    The next generation mobile networks are expected to provide multimedia applications with a high quality of service. On the other hand, interference among multiple base stations (BS) that co-exist in the same location limits the capacity of wireless networks. In conventional wireless networks, the base stations do not cooperate with each other. The BSs transmit individually to their respective mobile stations (MS) and treat the transmission from other BSs as interference. An alternative to this structure is a network cooperation structure. Here, BSs cooperate with other BSs to simultaneously transmit to their respective MSs using the same frequency band at a given time slot. By doing this, we significantly increase the capacity of the networks. This thesis presents novel research results on a noncooperative transmission scheme and a cooperative transmission scheme for multi-user multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM). We first consider the performance limit of a noncooperative transmission scheme. Here, we propose a method to reduce the interference and increase the throughput of orthogonal frequency division multiplexing (OFDM) systems in co-working wireless local area networks (WLANs) by using joint adaptive multiple antennas(AMA) and adaptive modulation (AM) with acknowledgement (ACK) Eigen-steering. The calculation of AMA and AM are performed at the receiver. The AMA is used to suppress interference and to maximize the signal-to-interference-plus-noise ratio (SINR). The AM scheme is used to allocate OFDM sub-carriers, power, and modulation mode subject to the constraints of power, discrete modulation, and the bit error rate (BER). The transmit weights, the allocation of power, and the allocation of sub-carriers are obtained at the transmitter using ACK Eigen-steering. The derivations of AMA, AM, and ACK Eigen-steering are shown. The performance of joint AMA and AM for various AMA configurations is evaluated through the simulations of BER and spectral efficiency (SE) against SIR. To improve the performance of the system further, we propose a practical cooperative transmission scheme to mitigate against the interference in co-working WLANs. Here, we consider a network coordination among BSs. We employ Tomlinson Harashima precoding (THP), joint transmit-receive beamforming based on SINR (signal-to-interference-plus-noise-ratio) maximization, and an adaptive precoding order to eliminate co-working interference and achieve bit error rate (BER) fairness among different users. We also consider the design of the system when partial channel state information (CSI) (where each user only knows its own CSI) and full CSI (where each user knows CSI of all users) are available at the receiver respectively. We prove analytically and by simulation that the performance of our proposed scheme will not be degraded under partial CSI. The simulation results show that the proposed scheme considerably outperforms both the existing noncooperative and cooperative transmission schemes. A method to design a spectrally efficient cooperative downlink transmission scheme employing precoding and beamforming is also proposed. The algorithm eliminates the interference and achieves symbol error rate (SER) fairness among different users. To eliminate the interference, Tomlinson Harashima precoding (THP) is used to cancel part of the interference while the transmit-receive antenna weights cancel the remaining one. A new novel iterative method is applied to generate the transmit-receive antenna weights. To achieve SER fairness among different users and further improve the performance of MIMO systems, we develop algorithms that provide equal SINR across all users and order the users so that the minimum SINR for each user is maximized. The simulation results show that the proposed scheme considerably outperforms existing cooperative transmission schemes in terms of the SER performance and complexity and approaches an interference free performance under the same configuration. We could improve the performance of the proposed interference cancellation further. This is because the proposed interference cancellation does not consider receiver noise when calculating the transmit-receive weight antennas. In addition, the proposed scheme mentioned above is designed specifically for a single-stream multi-user transmission. Here, we employ THP precoding and an iterative method based on the uplink-downlink duality principle to generate the transmit-receive antenna weights. The algorithm provides an equal SINR across all users. A simpler method is then proposed by trading off the complexity with a slight performance degradation. The proposed methods are extended to also work when the receiver does not have complete Channel State Informations (CSIs). A new method of setting the user precoding order, which has a much lower complexity than the VBLAST type ordering scheme but with almost the same performance, is also proposed. The simulation results show that the proposed schemes considerably outperform existing cooperative transmission schemes in terms of SER performance and approach an interference free performance. In all the cooperative transmission schemes proposed above, we use THP to cancel part of the interference. In this thesis, we also consider an alternative approach that bypasses the use of THP. The task of cancelling the interference from other users now lies solely within the transmit-receive antenna weights. We consider multiuser Gaussian broadcast channels with multiple antennas at both transmitter and receivers. An iterative multiple beamforming (IMB) algorithm is proposed, which is flexible in the antenna configuration and performs well in low to moderate data rates. Its capacity and bit error rate performance are compared with the ones achieved by the traditional zero-forcing method

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Distributed Interference Cancellation for Cognitive Radios Using Periodic Signals of the Primary System

    Get PDF
    • …
    corecore