3,571 research outputs found

    Immunity-Based Accommodation of Aircraft Subsystem Failures

    Get PDF
    This thesis presents the design, development, and flight-simulation testing of an artificial immune system (AIS) based approach for accommodation of different aircraft subsystem failures.;Failure accommodation is considered as part of a complex integrated AIS scheme that contains four major components: failure detection, identification, evaluation, and accommodation. The accommodation part consists of providing compensatory commands to the aircraft under specific abnormal conditions based on previous experience. In this research effort, the possibility of building an AIS allowing the extraction of pilot commands is investigated.;The proposed approach is based on structuring the self (nominal conditions) and the non-self (abnormal conditions) within the AIS paradigm, as sets of artificial memory cells (mimicking behavior of T-cells, B-cells, and antibodies) consisting of measurement strings, over pre-defined time windows. Each string is a set of features values at each sample time of the flight including pilot inputs, system states, and other variables. The accommodation algorithm relies on identifying the memory cell that is the most similar to the in-coming measurements. Once the best match is found, control commands corresponding to this match will be extracted from the memory and used for control purposes.;The proposed methodology is illustrated through simulation of simple maneuvers at nominal flight conditions, different actuators, and sensor failure conditions. Data for development and demonstration have been collected from West Virginia University 6-degrees-of-freedom motion-based flight simulator. The aircraft model used for this research represents a supersonic fighter which includes model following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation.;The simulation results demonstrate the possibility of extracting pilot compensatory commands from the self/non-self structure and the capability of the AIS paradigm to address the problem of accommodating actuator and sensor malfunctions as a part of a comprehensive and integrated framework along with abnormal condition detection, identification, and evaluation

    Adaptive and Online Health Monitoring System for Autonomous Aircraft

    Get PDF
    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour based on the progression of its sensory values produced by the aircraft's modules, components and/or subsystems. The AHMS indicates erroneous flight behaviour when a deviation to this health information is produced. This will be useful for a UAS because the pilot is taken out of the control loop and is unaware of how the environment and/or faults are affecting the behaviour of the aircraft. The autonomous pilot can use this health information to help produce safer and securer flight behaviour or fault tolerance to the aircraft. This allows the aircraft to fly safely in whatever the environmental conditions. This health information can also be used to help increase the endurance of the aircraft. This paper describes how the AHMS performs its capabilities

    Aircraft Abnormal Conditions Detection, Identification, and Evaluation Using Innate and Adaptive Immune Systems Interaction

    Get PDF
    Abnormal flight conditions play a major role in aircraft accidents frequently causing loss of control. To ensure aircraft operation safety in all situations, intelligent system monitoring and adaptation must rely on accurately detecting the presence of abnormal conditions as soon as they take place, identifying their root cause(s), estimating their nature and severity, and predicting their impact on the flight envelope.;Due to the complexity and multidimensionality of the aircraft system under abnormal conditions, these requirements are extremely difficult to satisfy using existing analytical and/or statistical approaches. Moreover, current methodologies have addressed only isolated classes of abnormal conditions and a reduced number of aircraft dynamic parameters within a limited region of the flight envelope.;This research effort aims at developing an integrated and comprehensive framework for the aircraft abnormal conditions detection, identification, and evaluation based on the artificial immune systems paradigm, which has the capability to address the complexity and multidimensionality issues related to aircraft systems.;Within the proposed framework, a novel algorithm was developed for the abnormal conditions detection problem and extended to the abnormal conditions identification and evaluation. The algorithm and its extensions were inspired from the functionality of the biological dendritic cells (an important part of the innate immune system) and their interaction with the different components of the adaptive immune system. Immunity-based methodologies for re-assessing the flight envelope at post-failure and predicting the impact of the abnormal conditions on the performance and handling qualities are also proposed and investigated in this study.;The generality of the approach makes it applicable to any system. Data for artificial immune system development were collected from flight tests of a supersonic research aircraft within a motion-based flight simulator. The abnormal conditions considered in this work include locked actuators (stabilator, aileron, rudder, and throttle), structural damage of the wing, horizontal tail, and vertical tail, malfunctioning sensors, and reduced engine effectiveness. The results of applying the proposed approach to this wide range of abnormal conditions show its high capability in detecting the abnormal conditions with zero false alarms and very high detection rates, correctly identifying the failed subsystem and evaluating the type and severity of the failure. The results also reveal that the post-failure flight envelope can be reasonably predicted within this framework

    Performance Analysis Of Non-Linear Adaptive Control Laws Using Hardware in the Loop of an Unmanned Aerial System

    Get PDF
    In practical applications, an Unmanned Aerial System\u27s (UAS) baseline performance is dictated by how well it can follow a given trajectory with limited stress on the actuators. However, these can be insufficient performance metrics when the UAS is allowed to adapt to an unpredicted external influence such as turbulence or actuation failure, while maintaining a satisfactory baseline performance. In this thesis, different control laws based on the formation flight geometry problem, nonlinear dynamic inversion and an artificial immune system adaptive mechanism , are implemented in hardware-in-the-loop as a precursor for in-flight testing. These controllers are compared based on three performance metrics: trajectory following, control activity and computer task execution time. The controllers chosen for comparison are: Basic Proportional-Integral-Derivative (PID), Outer loop Non-Linear Dynamic Inversion (NLDI), Extended NLDI, and the previous three controllers augmented with an AIS for a total of six controllers. The Extended NLDI augmented with the AIS outperformed all of the other algorithms under falure conditions on a global scale

    Bio-Inspired Mechanism for Aircraft Assessment Under Upset Conditions

    Get PDF
    Based on the artificial immune systems paradigm and a hierarchical multi-self strategy, a set of algorithms for aircraft sub-systems failure detection, identification, evaluation and flight envelope estimation has been developed and implemented. Data from a six degrees-of-freedom flight simulator were used to define a large set of 2-dimensional self/non-self projections as well as for the generation of antibodies and identifiers designated for health assessment of an aircraft under upset conditions. The methodology presented in this paper classifies and quantifies the type and severity of a broad number of aircraft actuators, sensors, engine and structural component failures. In addition, the impact of these upset conditions on the flight envelope is estimated using nominal test data. Based on immune negative and positive selection mechanisms, a heuristic selection of sub-selves and the formulation of a mapping- based algorithm capable of selectively capturing the dynamic fingerprint of upset conditions is implemented. The performance of the approach is assessed in terms of detection and identification rates, false alarms, and correct prediction of flight envelope reduction with respect to specific states. Furthermore, this methodology is implemented in flight test by using an unmanned aerial vehicle subjected to nominal and four different abnormal flight conditions instrumented with a low cost microcontroller

    Modeling of jet engine abnormal conditions and detection using the artificial immune system paradigm

    Get PDF
    Previous research at WVU has yielded promising results in the detection of aircraft sub-systems malfunctions using the artificial immune system (AIS) paradigm. However, one aircraft component that requires improvement is the aircraft propulsion system. In this research effort, MAPSS, a non-real time low-bypass turbofan engine model distributed by NASA, has been linearized and interfaced with the WVU F-15 model and the WVU 6 degrees-of-freedom flight simulator to provide a more complex engine model and create more options for engine failure modeling and engine failure detection. A variety of engine actuator and sensor failures were modeled and implemented into the simulation environment. A detection scheme based on the AIS approach was developed for specific classes of failures including throttle, burner fuel flow valve, variable nozzle area actuator, variable mixer area actuator, low-pressure spool speed sensor, low-pressure turbine exit static pressure sensor, and mixer pressure ratio sensor.;A 5-dimensional feature hyper-space is determined to build the self within the AIS paradigm for abnormal condition detection purposes. The WVU AIS interactive design environment based on evolutionary algorithms was used for data processing, detector generation, and limited optimization. Flight simulation data for system development and testing was acquired through experiments in the WVU 6 degrees-of-freedom flight simulator over extended areas of the flight envelope. The AIS-based detection scheme was tested using both nominal and engine failure conditions and its performance evaluated in terms of detection rates and false alarms. As compared to the previous failure detection results, significant improvement has been demonstrated as well as excellent potential for detection of the newly modeled engine failures

    Integrated Immunity-based Methodology for UAV Monitoring and Control

    Get PDF
    A general integrated and comprehensive health management framework based on the artificial immune system (AIS) paradigm is formulated and an automated system is developed and tested through simulation for the detection, identification, evaluation, and accommodation (DIEA) of abnormal conditions (ACs) on an unmanned aerial vehicle (UAV). The proposed methodology involves the establishment of a body of data to represent the function of the vehicle under nominal conditions, called the self, and differentiating this operation from that of the vehicle under an abnormal condition, referred to as the non-self. Data collected from simulations of the selected UAV autonomously flying a set of prescribed trajectories were used to develop and test novel schemes that are capable of addressing the AC-DIEA of sensor and actuator faults on a UAV. While the specific dynamic system used here is a UAV, the proposed framework and methodology is general enough to be adapted and applied to any complex dynamic system. The ACs considered within this effort included aerodynamic control surface locks and damage and angular rate sensor biases. The general framework for the comprehensive health management system comprises a novel complete integration of the AC-DIEA process with focus on the transition between the four different phases. The hierarchical multiself (HMS) strategy is used in conjunction with several biomimetic mechanisms to address the various steps in each phase. The partition of the universe approach is used as the basis of the AIS generation and the binary detection phase. The HMS approach is augmented by a mechanism inspired by the antigen presenting cells of the adaptive immune system for performing AC identification. The evaluation and accommodation phases are the most challenging phases of the AC-DIEA process due to the complexity and diversity of the ACs and the multidimensionality of the AIS. Therefore, the evaluation phase is divided into three separate steps: the qualitative evaluation, direct quantitative evaluation, and the indirect quantitative evaluation, where the type, severity, and effects of the AC are determined, respectively. The integration of the accommodation phase is based on a modular process, namely the strategic decision making, tactical decision marking, and execution modules. These modules are designed by the testing of several approaches for integrating the accommodation phase, which are specialized based on the type of AC being addressed. These approaches include redefining of the mission, adjustment or shifting of the control laws, or adjusting the sensor outputs. Adjustments of the mission include redefining of the trajectory to remove maneuvers which are no longer possible, while adjusting of the control laws includes modifying gains involved in determination of commanded control surface deflections. Analysis of the transition between phases includes a discussion of results for integrated example cases where the proposed AC-DIEA process is applied. The cases considered show the validity of the integrated AC-DIEA system and specific accommodation approaches by an improvement in flight performance through metrics that capture trajectory tracking errors and control activity differences between nominal, abnormal, and accommodated cases

    Development of Fault Tolerant Adaptive Control Laws for Aerospace Systems

    Get PDF
    The main topic of this dissertation is the design, development and implementation of intelligent adaptive control techniques designed to maintain healthy performance of aerospace systems subjected to malfunctions, external parameter changes and/or unmodeled dynamics. The dissertation is focused on the development of novel adaptive control configurations that rely on non-linear functions that appear in the immune system of living organisms as main source of adaptation. One of the main goals of this dissertation is to demonstrate that these novel adaptive control architectures are able to improve overall performance and protect the system while reducing control effort and maintaining adequate operation outside bounds of nominal design. This research effort explores several phases, ranging from theoretical stability analysis, simulation and hardware implementation on different types of aerospace systems including spacecraft, aircraft and quadrotor vehicles. The results presented in this dissertation are focused on two main adaptivity approaches, the first one is intended for aerospace systems that do not attain large angles and use exact feedback linearization of Euler angle kinematics. A proof of stability is presented by means of the circle Criterion and Lyapunov’s direct method. The second approach is intended for aerospace systems that can attain large attitude angles (e.g. space systems in gravity-less environments), the adaptation is incorporated on a baseline architecture that uses partial feedback linearization of quaternions kinematics. In this case, the closed loop stability was analyzed using Lyapunov’s direct method and Barbalat’s Lemma. It is expected that some results presented in this dissertation can contribute towards the validation and certification of direct adaptive controllers

    Artificial Immune System for Unmanned Aerial Vehicle Abnormal Condition Detection and Identification

    Get PDF
    A detection and identification scheme for abnormal conditions was developed for an unmanned aerial vehicle (UAV) based on the artificial immune system (AIS) paradigm. This technique involves establishing a body of data to represent normal conditions referred to as “self” and differentiating these conditions from abnormal conditions, referred to as “non-self”. Data collected from simulation of the UAV attempting to autonomously fly a pre-decided trajectory were used to develop and test a scheme that was able to detect and identify aircraft sensor and actuator faults. These faults included aerodynamic control surface locks and damages and angular rate sensor biases. The method used to create the AIS is known as the partition of the universe approach. This approach differs from standard clustering approaches because the universe is divided into uniform partition clusters rather than clustering data using some clustering algorithm. It is simpler and requires less computational resources. This will be the first time that this approach has been applied for use in aerospace engineering. Data collected from nominal flights were used to define self partitions, and the non-self partitions were defined implicitly. The creation scheme is also discussed, involving all software used for simulation, as well as the process of creating the self and the logic behind the detection and identification schemes. The detection scheme was evaluated based on detection rate, detection time, and false alarms for flights under both normal and abnormal conditions. The failure identification scheme was assessed in terms of identification rate and time. Investigation of the proposed technique showed promising results for the cases explored with comparable performance with respect to clustering-based approaches and motivates further research and extension of the proposed methodology toward a more complete health management system
    • …
    corecore