3,776 research outputs found

    An instinct for detection: psychological perspectives on CCTV surveillance

    Get PDF
    The aim of this article is to inform and stimulate a proactive, multidisciplinary approach to research and development in surveillance-based detective work. In this article we review some of the key psychological issues and phenomena that practitioners should be aware of. We look at how human performance can be explained with reference to our biological and evolutionary legacy. We show how critical viewing conditions can be in determining whether observers detect or overlook criminal activity in video material. We examine situations where performance can be surprisingly poor, and cover situations where, even once confronted with evidence of these detection deficits, observers still underestimate their susceptibility to them. Finally we explain why the emergence of these relatively recent research themes presents an opportunity for police and law enforcement agencies to set a new, multidisciplinary research agenda focused on relevant and pressing issues of national and international importance

    Human activity recognition: suitability of a neuromorphic approach for on-edge AIoT applications

    Get PDF
    Human activity recognition (HAR) is a classification problem involving time-dependent signals produced by body monitoring, and its application domain covers all the aspects of human life, from healthcare to sport, from safety to smart environments. As such, it is naturally well suited for on-edge deployment of personalized point-of-care (POC) analyses or other tailored services for the user. However, typical smart and wearable devices suffer from relevant limitations regarding energy consumption, and this significantly hinders the possibility for successful employment of edge computing for tasks like HAR. In this paper, we investigate how this problem can be mitigated by adopting a neuromorphic approach. By comparing optimized classifiers based on traditional deep neural network (DNN) architectures as well as on recent alternatives like the Legendre Memory Unit (LMU), we show how spiking neural networks (SNNs) can effectively deal with the temporal signals typical of HAR providing high performances at a low energy cost. By carrying out an application-oriented hyperparameter optimization, we also propose a methodology flexible to be extended to different domains, to enlarge the field of neuro-inspired classifier suitable for on-edge artificial intelligence of things (AIoT) applications

    On a wildlife tracking and telemetry system : a wireless network approach

    Get PDF
    Includes abstract.Includes bibliographical references (p. 239-261).Motivated by the diversity of animals, a hybrid wildlife tracking system, EcoLocate, is proposed, with lightweight VHF-like tags and high performance GPS enabled tags, bound by a common wireless network design. Tags transfer information amongst one another in a multi-hop store-and-forward fashion, and can also monitor the presence of one another, enabling social behaviour studies to be conducted. Information can be gathered from any sensor variable of interest (such as temperature, water level, activity and so on) and forwarded through the network, thus leading to more effective game reserve monitoring. Six classes of tracking tags are presented, varying in weight and functionality, but derived from a common set of code, which facilitates modular tag design and deployment. The link between the tags means that tags can dynamically choose their class based on their remaining energy, prolonging lifetime in the network at the cost of a reduction in function. Lightweight, low functionality tags (that can be placed on small animals) use the capabilities of heavier, high functionality devices (placed on larger animals) to transfer their information. EcoLocate is a modular approach to animal tracking and sensing and it is shown how the same common technology can be used for diverse studies, from simple VHF-like activity research to full social and behavioural research using wireless networks to relay data to the end user. The network is not restricted to only tracking animals – environmental variables, people and vehicles can all be monitored, allowing for rich wildlife tracking studies
    • 

    corecore