4 research outputs found

    Mobile three-dimensional city maps

    Get PDF
    Maps are visual representations of environments and the objects within, depicting their spatial relations. They are mainly used in navigation, where they act as external information sources, supporting observation and decision making processes. Map design, or the art-science of cartography, has led to simplification of the environment, where the naturally three-dimensional environment has been abstracted to a two-dimensional representation, populated with simple geometrical shapes and symbols. However, abstract representation requires a map reading ability. Modern technology has reached the level where maps can be expressed in digital form, having selectable, scalable, browsable and updatable content. Maps may no longer even be limited to two dimensions, nor to an abstract form. When a real world based virtual environment is created, a 3D map is born. Given a realistic representation, would the user no longer need to interpret the map, and be able to navigate in an inherently intuitive manner? To answer this question, one needs a mobile test platform. But can a 3D map, a resource hungry real virtual environment, exist on such resource limited devices? This dissertation approaches the technical challenges posed by mobile 3D maps in a constructive manner, identifying the problems, developing solutions and providing answers by creating a functional system. The case focuses on urban environments. First, optimization methods for rendering large, static 3D city models are researched and a solution provided by combining visibility culling, level-of-detail management and out-of-core rendering, suited for mobile 3D maps. Then, the potential of mobile networking is addressed, developing efficient and scalable methods for progressive content downloading and dynamic entity management. Finally, a 3D navigation interface is developed for mobile devices, and the research validated with measurements and field experiments. It is found that near realistic mobile 3D city maps can exist in current mobile phones, and the rendering rates are excellent in 3D hardware enabled devices. Such 3D maps can also be transferred and rendered on-the-fly sufficiently fast for navigation use over cellular networks. Real world entities such as pedestrians or public transportation can be tracked and presented in a scalable manner. Mobile 3D maps are useful for navigation, but their usability depends highly on interaction methods - the potentially intuitive representation does not imply, for example, faster navigation than with a professional 2D street map. In addition, the physical interface limits the usability

    An adaptive physiology-aware communication framework for distributed medical cyber physical systems

    Get PDF
    For emergency medical cyber-physical systems, enhancing the safety and effectiveness of patient care, especially in remote rural areas, is essential. While the doctor to patient ratio in the United States is 30 to 10,000 in large metropolitan areas, it is only 5 to 10,000 in most rural areas; and the highest death rates are often found in the most rural counties. Use of telecommunication technologies can enhance effectiveness and safety of emergency ambulance transport of patients from rural areas to a regional center hospital. It enables remote monitoring of patients by the physician experts at the tertiary center. There are critical times during transport when physician experts can provide vital assistance to the ambulance Emergency Medical Technicians (EMT) to associate best treatments. However, the communication along the roads in rural areas can range irregularly from 4G to low speed 2G links, including some parts of routes with cellular network communication breakage. This unreliable and limited communication bandwidth together with the produced mass of clinical data and the many information exchanges pose a major challenge in real-time supervision of patients. In this study, we define the notion of distributed emergency care, and propose a novel adaptive physiology-aware communication framework which is aware of the patient condition, the underlying network bandwidth, and the criticality of clinical data in the context of the specific diseases. Using the concept of distributed medical CPS models, we study the semantics relation of communication Quality of Service (QoS) with clinical messages, criticality of clinical data, and an ambulance's undertaken route all in a disease-aware manner. Our proposed communication framework is aimed to enhance remote monitoring of acute patients during ambulance transport from a rural hospital to a regional center hospital. We evaluate the components of our framework through various experimentation phases including simulation, instrumentation, real-world profiling, and validation
    corecore