7,414 research outputs found

    Tune in to your emotions: a robust personalized affective music player

    Get PDF
    The emotional power of music is exploited in a personalized affective music player (AMP) that selects music for mood enhancement. A biosignal approach is used to measure listeners’ personal emotional reactions to their own music as input for affective user models. Regression and kernel density estimation are applied to model the physiological changes the music elicits. Using these models, personalized music selections based on an affective goal state can be made. The AMP was validated in real-world trials over the course of several weeks. Results show that our models can cope with noisy situations and handle large inter-individual differences in the music domain. The AMP augments music listening where its techniques enable automated affect guidance. Our approach provides valuable insights for affective computing and user modeling, for which the AMP is a suitable carrier application

    Construals as a complement to intelligent tutoring systems in medical education

    Get PDF
    This is a preliminary version of a report prepared by Meurig and Will Beynon in conjunction with a poster paper "Mediating Intelligence through Observation, Dependency and Agency in Making Construals of Malaria" at the 11th International Conference on Intelligent Tutoring Systems (ITS 2012) and a paper "Construals to Support Exploratory and Collaborative Learning in Medicine" at the associated workshop on Intelligent Support for Exploratory Environments (ISEE 2012). A final version of the report will be published at a later stage after feedback from presentations at these events has been taken into account, and the experimental versions of the JS-EDEN interpreter used in making construals have been developed to a more mature and stable form

    Affective learning: improving engagement and enhancing learning with affect-aware feedback

    Get PDF
    This paper describes the design and ecologically valid evaluation of a learner model that lies at the heart of an intelligent learning environment called iTalk2Learn. A core objective of the learner model is to adapt formative feedback based on students’ affective states. Types of adaptation include what type of formative feedback should be provided and how it should be presented. Two Bayesian networks trained with data gathered in a series of Wizard-of-Oz studies are used for the adaptation process. This paper reports results from a quasi-experimental evaluation, in authentic classroom settings, which compared a version of iTalk2Learn that adapted feedback based on students’ affective states as they were talking aloud with the system (the affect condition) with one that provided feedback based only on the students’ performance (the non-affect condition). Our results suggest that affect-aware support contributes to reducing boredom and off-task behavior, and may have an effect on learning. We discuss the internal and ecological validity of the study, in light of pedagogical considerations that informed the design of the two conditions. Overall, the results of the study have implications both for the design of educational technology and for classroom approaches to teaching, because they highlight the important role that affect-aware modelling plays in the adaptive delivery of formative feedback to support learning

    Linking recorded data with emotive and adaptive computing in an eHealth environment

    Get PDF
    Telecare, and particularly lifestyle monitoring, currently relies on the ability to detect and respond to changes in individual behaviour using data derived from sensors around the home. This means that a significant aspect of behaviour, that of an individuals emotional state, is not accounted for in reaching a conclusion as to the form of response required. The linked concepts of emotive and adaptive computing offer an opportunity to include information about emotional state and the paper considers how current developments in this area have the potential to be integrated within telecare and other areas of eHealth. In doing so, it looks at the development of and current state of the art of both emotive and adaptive computing, including its conceptual background, and places them into an overall eHealth context for application and development

    Inside Out: Detecting Learners' Confusion to Improve Interactive Digital Learning Environments

    Get PDF
    Confusion is an emotion that is likely to occur while learning complex information. This emotion can be beneficial to learners in that it can foster engagement, leading to deeper understanding. However, if learners fail to resolve confusion, its effect can be detrimental to learning. Such detrimental learning experiences are particularly concerning within digital learning environments (DLEs), where a teacher is not physically present to monitor learner engagement and adapt the learning experience accordingly. However, with better information about a learner's emotion and behavior, it is possible to improve the design of interactive DLEs (IDLEs) not only in promoting productive confusion but also in preventing overwhelming confusion. This article reviews different methodological approaches for detecting confusion, such as self-report and behavioral and physiological measures, and discusses their implications within the theoretical framework of a zone of optimal confusion. The specificities of several methodologies and their potential application in IDLEs are discussed

    Towards a synthetic tutor assistant: The EASEL project and its architecture

    Get PDF
    Robots are gradually but steadily being introduced in our daily lives. A paramount application is that of education, where robots can assume the role of a tutor, a peer or simply a tool to help learners in a specific knowledge domain. Such endeavor posits specific challenges: affective social behavior, proper modelling of the learner’s progress, discrimination of the learner’s utterances, expressions and mental states, which, in turn, require an integrated architecture combining perception, cognition and action. In this paper we present an attempt to improve the current state of robots in the educational domain by introducing the EASEL EU project. Specifically, we introduce the EASEL’s unified robot architecture, an innovative Synthetic Tutor Assistant (STA) whose goal is to interactively guide learners in a science-based learning paradigm, allowing us to achieve such rich multimodal interactions

    Learner Modelled Environments

    Get PDF
    Learner modelled environments (LMEs) are digital environments that are capable of automatically detecting learner’s behaviours in relation to a specific knowledge domain, to reason about those behaviours in order to asses learner’s performance, skills, socio-emotional and cognitive needs, and to act accordingly in a pedagogically appropriate manner. Digital environments that possess such capabilities are typically referred to as Intelligent Learning Environments, or more traditionally – as Intelligent Tutoring Systems (ITSs)

    Endogenous fantasy and learning in digital games.

    Get PDF
    Many people believe that educational games are effective because they motivate children to actively engage in a learning activity as part of playing the game. However, seminal work by Malone (1981), exploring the motivational aspects of digital games, concluded that the educational effectiveness of a digital game depends on the way in which learning content is integrated into the fantasy context of the game. In particular, he claimed that content which is intrinsically related to the fantasy will produce better learning than that which is merely extrinsically related. However, this distinction between intrinsic and extrinsic (or endogenous and exogenous) fantasy is a concept that has developed a confused standing over the following years. This paper will address this confusion by providing a review and critique of the empirical and theoretical foundations of endogenous fantasy, and its relevance to creating educational digital games. Substantial concerns are raised about the empirical basis of this work and a theoretical critique of endogenous fantasy is offered, concluding that endogenous fantasy is a misnomer, in so far as the "integral and continuing relationship" of fantasy cannot be justified as a critical means of improving the effectiveness of educational digital games. An alternative perspective on the intrinsic integration of learning content is described, incorporating game mechanics, flow and representations

    Learn Piano with BACh: An Adaptive Learning Interface that Adjusts Task Difficulty based on Brain State

    Get PDF
    We present Brain Automated Chorales (BACh), an adaptive brain-computer system that dynamically increases the levels of difficulty in a musical learning task based on pianists\u27 cognitive workload measured by functional near-infrared spectroscopy. As users\u27 cognitive workload fell below a certain threshold, suggesting that they had mastered the material and could handle more cognitive information, BACh automatically increased the difficulty of the learning task. We found that learners played with significantly increased accuracy and speed in the brain-based adaptive task compared to our control condition. Participant feedback indicated that they felt they learned better with BACh and they liked the timings of the level changes. The underlying premise of BACh can be applied to learning situations where a task can be broken down into increasing levels of difficulty
    corecore