5,508 research outputs found

    A psychophysical investigation of global illumination algorithms used in augmented reality

    Get PDF
    Global illumination rendering algorithms are capable of producing images that are visually realistic. However, this typically comes at a large computational expense. The overarching goal of this research was to compare different rendering solutions in order to understand why some yield better results when applied to rendering synthetic objects into real photographs. As rendered images are ultimately viewed by human observers, it was logical to use psychophysics to investigate these differences. A psychophysical experiment was conducted judging the composite images for accuracy to the original photograph. In addition, iCAM, an image color appearance model, was used to calculate image differences for the same set of images. In general it was determined that any full global illumination is better than direct illumination solutions only. Also, it was discovered that the full rendering with all of its artifacts is not necessarily an indicator of judged accuracy for the final composite image. Finally, initial results show promise in using iCAM to predict a relationship similar to the psychophysics, which could eventually be used in-the-rendering-loop to achieve photo-realism

    U-DiVE: Design and evaluation of a distributed photorealistic virtual reality environment

    Get PDF
    This dissertation presents a framework that allows low-cost devices to visualize and interact with photorealistic scenes. To accomplish this task, the framework makes use of Unity’s high-definition rendering pipeline, which has a proprietary Ray Tracing algorithm, and Unity’s streaming package, which allows an application to be streamed within its editor. The framework allows the composition of a realistic scene using a Ray Tracing algorithm, and a virtual reality camera with barrel shaders, to correct the lens distortion needed for the use on an inexpensive cardboard. It also includes a method to collect the mobile device’s spatial orientation through a web browser to control the user’s view, delivered via WebRTC. The proposed framework can produce low-latency, realistic and immersive environments to be accessed through low-cost HMDs and mobile devices. To evaluate the structure, this work includes the verification of the frame rate achieved by the server and mobile device, which should be higher than 30 FPS for a smooth experience. In addition, it discusses whether the overall quality of experience is acceptable by evaluating the delay of image delivery from the server up to the mobile device, in face of user’s movement. Our tests showed that the framework reaches a mean latency around 177 (ms) with household Wi-Fi equipment and a maximum latency variation of 77.9 (ms), among the 8 scenes tested.Esta dissertação apresenta um framework que permite que dispositivos de baixo custo visualizem e interajam com cenas fotorrealísticas. Para realizar essa tarefa, o framework faz uso do pipeline de renderização de alta definição do Unity, que tem um algoritmo de rastreamento de raio proprietário, e o pacote de streaming do Unity, que permite o streaming de um aplicativo em seu editor. O framework permite a composição de uma cena realista usando um algoritmo de Ray Tracing, e uma câmera de realidade virtual com shaders de barril, para corrigir a distorção da lente necessária para usar um cardboard de baixo custo. Inclui também um método para coletar a orientação espacial do dispositivo móvel por meio de um navegador Web para controlar a visão do usuário, entregue via WebRTC. O framework proposto pode produzir ambientes de baixa latência, realistas e imersivos para serem acessados por meio de HMDs e dispositivos móveis de baixo custo. Para avaliar a estrutura, este trabalho considera a verificação da taxa de quadros alcançada pelo servidor e pelo dispositivo móvel, que deve ser superior a 30 FPS para uma experiência fluida. Além disso, discute se a qualidade geral da experiência é aceitável, ao avaliar o atraso da entrega das imagens desde o servidor até o dispositivo móvel, em face da movimentação do usuário. Nossos testes mostraram que o framework atinge uma latência média em torno dos 177 (ms) com equipamentos wi-fi de uso doméstico e uma variação máxima das latências igual a 77.9 (ms), entre as 8 cenas testadas

    One view is not enough: review of and encouragement for multiple and alternative representations in 3D and immersive visualisation

    Get PDF
    The opportunities for 3D visualisations are huge. People can be immersed inside their data, interface with it in natural ways, and see it in ways that are not possible on a traditional desktop screen. Indeed, 3D visualisations, especially those that are immersed inside head-mounted displays are becoming popular. Much of this growth is driven by the availability, popularity and falling cost of head-mounted displays and other immersive technologies. However, there are also challenges. For example, data visualisation objects can be obscured, important facets missed (perhaps behind the viewer), and the interfaces may be unfamiliar. Some of these challenges are not unique to 3D immersive technologies. Indeed, developers of traditional 2D exploratory visualisation tools would use alternative views, across a multiple coordinated view (MCV) system. Coordinated view interfaces help users explore the richness of the data. For instance, an alphabetical list of people in one view shows everyone in the database, while a map view depicts where they live. Each view provides a different task or purpose. While it is possible to translate some desktop interface techniques into the 3D immersive world, it is not always clear what equivalences would be. In this paper, using several case studies, we discuss the challenges and opportunities for using multiple views in immersive visualisation. Our aim is to provide a set of concepts that will enable developers to perform critical thinking, creative thinking and push the boundaries of what is possible with 3D and immersive visualisation. In summary developers should consider how to integrate many views, techniques and presentation styles, and one view is not enough when using 3D and immersive visualisations

    Virtual reality as an educational tool in interior architecture

    Get PDF
    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent Univ., 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references.This thesis discusses the use of virtual reality technology as an educational tool in interior architectural design. As a result of this discussion, it is proposed that virtual reality can be of use in aiding three-dimensional design and visualization, and may speed up the design process. It may also be of help in getting the designers/students more involved in their design projects. Virtual reality can enhance the capacity of designers to design in three dimensions. The virtual reality environment used in designing should be capable of aiding both the design and the presentation process. The tradeoffs of the technology, newly emerging trends and future directions in virtual reality are discussed.Aktaş, OrkunM.S

    Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities

    Full text link
    Recently there has been a flurry of research on the use of reconfigurable intelligent surfaces (RIS) in wireless networks to create smart radio environments. In a smart radio environment, surfaces are capable of manipulating the propagation of incident electromagnetic waves in a programmable manner to actively alter the channel realization, which turns the wireless channel into a controllable system block that can be optimized to improve overall system performance. In this article, we provide a tutorial overview of reconfigurable intelligent surfaces (RIS) for wireless communications. We describe the working principles of reconfigurable intelligent surfaces (RIS) and elaborate on different candidate implementations using metasurfaces and reflectarrays. We discuss the channel models suitable for both implementations and examine the feasibility of obtaining accurate channel estimates. Furthermore, we discuss the aspects that differentiate RIS optimization from precoding for traditional MIMO arrays highlighting both the arising challenges and the potential opportunities associated with this emerging technology. Finally, we present numerical results to illustrate the power of an RIS in shaping the key properties of a MIMO channel.Comment: to appear in the IEEE Transactions on Cognitive Communications and Networking (TCCN

    Scattering Delay Network Simulator of Coupled Volume Acoustics

    Get PDF
    IEEEArtificial reverberators provide a computationally viable alternative to full-scale room acoustics simulation methods for deployment in interactive, immersive systems. Scattering delay network (SDN) is an artificial reverberator that allows direct parametric control over the geometry of a simulated cuboid enclosure as well as the directional characteristics of the simulated sound sources and microphones. This paper extends the concept of SDN reverberators to multiple enclosures coupled via an aperture. The extension allows independent control of the acoustical properties of the coupled enclosures and the size of the connecting aperture. The transfer function of the coupled-volume SDN system is derived. The effectiveness of the proposed method is evaluated in terms of rendered energy decay curves in comparison to full-scale ray-tracing models and scale model measurements

    AiAReSeg: Catheter Detection and Segmentation in Interventional Ultrasound using Transformers

    Full text link
    To date, endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature. Prolonged Fluoroscopic exposure is harmful for the patient and the clinician, and may lead to severe post-operative sequlae such as the development of cancer. Meanwhile, the use of interventional Ultrasound has gained popularity, due to its well-known benefits of small spatial footprint, fast data acquisition, and higher tissue contrast images. However, ultrasound images are hard to interpret, and it is difficult to localise vessels, catheters, and guidewires within them. This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences. The network architecture was inspired by the Attention in Attention mechanism, temporal tracking networks, and introduced a novel 3D segmentation head that performs 3D deconvolution across time. In order to facilitate training of such deep learning networks, we introduce a new data synthesis pipeline that used physics-based catheter insertion simulations, along with a convolutional ray-casting ultrasound simulator to produce synthetic ultrasound images of endovascular interventions. The proposed method is validated on a hold-out validation dataset, thus demonstrated robustness to ultrasound noise and a wide range of scanning angles. It was also tested on data collected from silicon-based aorta phantoms, thus demonstrated its potential for translation from sim-to-real. This work represents a significant step towards safer and more efficient endovascular surgery using interventional ultrasound.Comment: This work has been submitted to the IEEE for possible publicatio

    The delta radiance field

    Get PDF
    The wide availability of mobile devices capable of computing high fidelity graphics in real-time has sparked a renewed interest in the development and research of Augmented Reality applications. Within the large spectrum of mixed real and virtual elements one specific area is dedicated to produce realistic augmentations with the aim of presenting virtual copies of real existing objects or soon to be produced products. Surprisingly though, the current state of this area leaves much to be desired: Augmenting objects in current systems are often presented without any reconstructed lighting whatsoever and therefore transfer an impression of being glued over a camera image rather than augmenting reality. In light of the advances in the movie industry, which has handled cases of mixed realities from one extreme end to another, it is a legitimate question to ask why such advances did not fully reflect onto Augmented Reality simulations as well. Generally understood to be real-time applications which reconstruct the spatial relation of real world elements and virtual objects, Augmented Reality has to deal with several uncertainties. Among them, unknown illumination and real scene conditions are the most important. Any kind of reconstruction of real world properties in an ad-hoc manner must likewise be incorporated into an algorithm responsible for shading virtual objects and transferring virtual light to real surfaces in an ad-hoc fashion. The immersiveness of an Augmented Reality simulation is, next to its realism and accuracy, primarily dependent on its responsiveness. Any computation affecting the final image must be computed in real-time. This condition rules out many of the methods used for movie production. The remaining real-time options face three problems: The shading of virtual surfaces under real natural illumination, the relighting of real surfaces according to the change in illumination due to the introduction of a new object into a scene, and the believable global interaction of real and virtual light. This dissertation presents contributions to answer the problems at hand. Current state-of-the-art methods build on Differential Rendering techniques to fuse global illumination algorithms into AR environments. This simple approach has a computationally costly downside, which limits the options for believable light transfer even further. This dissertation explores new shading and relighting algorithms built on a mathematical foundation replacing Differential Rendering. The result not only presents a more efficient competitor to the current state-of-the-art in global illumination relighting, but also advances the field with the ability to simulate effects which have not been demonstrated by contemporary publications until now
    corecore