8,562 research outputs found

    Combining case based reasoning with neural networks

    Get PDF
    This paper presents a neural network based technique for mapping problem situations to problem solutions for Case-Based Reasoning (CBR) applications. Both neural networks and CBR are instance-based learning techniques, although neural nets work with numerical data and CBR systems work with symbolic data. This paper discusses how the application scope of both paradigms could be enhanced by the use of hybrid concepts. To make the use of neural networks possible, the problem's situation and solution features are transformed into continuous features, using techniques similar to CBR's definition of similarity metrics. Radial Basis Function (RBF) neural nets are used to create a multivariable, continuous input-output mapping. As the mapping is continuous, this technique also provides generalisation between cases, replacing the domain specific solution adaptation techniques required by conventional CBR. This continuous representation also allows, as in fuzzy logic, an associated membership measure to be output with each symbolic feature, aiding the prioritisation of various possible solutions. A further advantage is that, as the RBF neurons are only active in a limited area of the input space, the solution can be accompanied by local estimates of accuracy, based on the sufficiency of the cases present in that area as well as the results measured during testing. We describe how the application of this technique could be of benefit to the real world problem of sales advisory systems, among others

    An agent-driven semantical identifier using radial basis neural networks and reinforcement learning

    Full text link
    Due to the huge availability of documents in digital form, and the deception possibility raise bound to the essence of digital documents and the way they are spread, the authorship attribution problem has constantly increased its relevance. Nowadays, authorship attribution,for both information retrieval and analysis, has gained great importance in the context of security, trust and copyright preservation. This work proposes an innovative multi-agent driven machine learning technique that has been developed for authorship attribution. By means of a preprocessing for word-grouping and time-period related analysis of the common lexicon, we determine a bias reference level for the recurrence frequency of the words within analysed texts, and then train a Radial Basis Neural Networks (RBPNN)-based classifier to identify the correct author. The main advantage of the proposed approach lies in the generality of the semantic analysis, which can be applied to different contexts and lexical domains, without requiring any modification. Moreover, the proposed system is able to incorporate an external input, meant to tune the classifier, and then self-adjust by means of continuous learning reinforcement.Comment: Published on: Proceedings of the XV Workshop "Dagli Oggetti agli Agenti" (WOA 2014), Catania, Italy, Sepember. 25-26, 201

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Comparative performance of some popular ANN algorithms on benchmark and function approximation problems

    Full text link
    We report an inter-comparison of some popular algorithms within the artificial neural network domain (viz., Local search algorithms, global search algorithms, higher order algorithms and the hybrid algorithms) by applying them to the standard benchmarking problems like the IRIS data, XOR/N-Bit parity and Two Spiral. Apart from giving a brief description of these algorithms, the results obtained for the above benchmark problems are presented in the paper. The results suggest that while Levenberg-Marquardt algorithm yields the lowest RMS error for the N-bit Parity and the Two Spiral problems, Higher Order Neurons algorithm gives the best results for the IRIS data problem. The best results for the XOR problem are obtained with the Neuro Fuzzy algorithm. The above algorithms were also applied for solving several regression problems such as cos(x) and a few special functions like the Gamma function, the complimentary Error function and the upper tail cumulative χ2\chi^2-distribution function. The results of these regression problems indicate that, among all the ANN algorithms used in the present study, Levenberg-Marquardt algorithm yields the best results. Keeping in view the highly non-linear behaviour and the wide dynamic range of these functions, it is suggested that these functions can be also considered as standard benchmark problems for function approximation using artificial neural networks.Comment: 18 pages 5 figures. Accepted in Pramana- Journal of Physic

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost
    • …
    corecore