114 research outputs found

    The Distance between Colors; Using DeltaE* to Determine Which Colors Are Compatible

    Get PDF
    The focus of this study was to identify colors that can be easily distinguished from one another by normal color vision and slightly deficient color vision observers, and then test those colors to determine the significance of color separation as an indicator of color discriminability for both types of participants. There were 14 color normal and 9 color deficient individuals whose level of color deficiency were determined using standard diagnostic tests. The colors were selected by avoiding co-linearity in the color confusion line graphs for deuteranopes, protanopes and tritanopes. The difference between each of the colors was then calculated. The chosen colors were presented to the participants in a Color Vision Discrimination (CVD) test, first as color boxes and then as color text made up of three letters followed by three numbers. A one-tailed Spearman\u27s non-parametric Rank Order Correlation was conducted. The results indicated that the difference between two colors does not determine the ability of a color normal observer to distinguish between two colors given that the color is presented as a color block ( rs = -.260, p = .234), but does determine their ability when presented as color text (rs = -.644, p = .001). When it comes to color deficient individuals, the results show that for color blocks (rs = -.558, p = .015) and color text (rs = -.505, p = .002) their ability to distinguish between the candidate colors depends on the separation between the colors. Colors were selected on the basis that they were not confused with any other color. Those colors found to be most easily distinguished will be useful in many different applications such as web site design, Internet displays of all types, and various other military and industrial applications

    An Interactive Color Picker that Ensures WCAG2.0 Compliant Color Contrast Levels

    Get PDF
    AbstractInsufficient contrast between text and the background is a common problem on the web. WCAG2.0 addresses this problem, but the definition is hard to understand for most designers. Therefore, some web designers check their designs with contrast checking tools after the design is finished. If the design does not meet the WCAG2.0 guidelines the designer will have to go back and make adjustments. To overcome this problem a color picker tool is proposed that allows designers to select WCAG2.0 compliant colors during the design process thus eliminating the need for post-design color adjustments. First, the designer selects the first color freely from all available colors. Subsequently, only colors are presented that meets the chosen contrast level. In addition to being a design tool, it also serves as a pedagogical visualization aid that can help students and designers better understand the complex relationships between colors palettes and their contrasts

    The Effect of Training upon Faculty Stages of Concern about Making Color Vision Deficiency Adaptations

    Get PDF
    Although color vision deficiency affects an appreciable portion of the human race, those with the condition do not enjoy mandatory educational accommodations. The purpose of this quasi-experimental investigation was to quantify the effect of professional development training on university faculty concerns about adapting their instruction for color vision deficiency. This investigation used a static-group comparison design with a professional development intervention for the experimental group at a liberal arts university (N = 98) in the Southeast of the United States, collecting data through an online fielding of the Stages of Concern Questionnaire. Independent Samples t Tests between the two groups revealed no statistically significant differences in means of raw scores (alpha level of .014) for the stages 0 through 5 concerns. However, the results did show a statistically significant increase (p \u3c .001) for stage 6 concerns, suggesting that the training did change the concerns of the experimental group participants about exploring and desiring other options for adjusting their instruction for color vision deficiency. Such responses are suggestive that the training may have raised resistance to implementing instructional adaptations for color vision deficiency. These results provide research-based knowledge to guide collegiate leadership in making policy about these optional adaptations, and suggest that future research about making instruction more accessible for color deficient students should focus on institutionally-based, rather than instructor-based, initiatives

    Effectiveness of Color-Picking Interfaces Among Non-designers

    Get PDF
    There are relatively few studies on the effectiveness of color picking interface. This study therefore set out to measure both the efficiency in terms of task completion time and preference of four color-picking interfaces found in many design software applications including RGB, HSL, map and palette. A controlled experiment was conducted involving n = 16 participants without formal design training. The results show that the map and RGB interfaces were preferred by the participants while the palette interface resulted in the shortest task completion times. The HSL was the least favorable color picking interface for the given cohort of users. The results indicate that the palette, map and RGB color pickers found in entry level software probably are the most suitable for users without training in the use of colors.acceptedVersio

    Assessing Color Discrimination

    Get PDF
    The purpose of this study was to evaluate human color vision discriminability within individuals that have color normal vision and those that have color deficient vision. Combinations of 15 colors were used from a list of colors recommended for computer displays in Air Traffic Control settings, a population with some mildly color vision deficient individuals. After a match to sample test was designed to assess the limits of human color vision discrimination based on color saturation and hue, standard color diagnostic tests were used to categorize college students as having normal or deficient color vision. The results argue that color saturation and hue impact human ability to discriminate colors, particularly as the delta E is small. This evidence also indicates that the effect that hue and saturation have on discriminability is not predicted by standard color vision assessment tests. Our results show that there is no difference in discriminability based on hue or saturation of both color normal and color deficient individuals, but for one exception. The delta e for black was significantly higher than all other colors. This was true for both color normal and color deficient individuals. From this information, it can be determined that the tolerance threshold for black should be dE(00) = 36.9 and the tolerance for all other colors to be dE(00) =9.2 for display on LCD displays. These results will have value for any computer display of critical information in which color discrimination is important for complete comprehension. The large number of individuals with color vision problems also makes these results a useful guide to color coding of information on web page design

    Adaptive Methods for Color Vision Impaired Users

    Get PDF
    Color plays a key role in the understanding of the information in computer environments. It happens that about 5% of the world population is affected by color vision deficiency (CVD), also called color blindness. This visual impairment hampers the color perception, ending up by limiting the overall perception that CVD people have about the surrounding environment, no matter it is real or virtual. In fact, a CVD individual may not distinguish between two different colors, what often originates confusion or a biased understanding of the reality, including web environments, whose web pages are plenty of media elements like text, still images, video, sprites, and so on. Aware of the difficulties that color-blind people may face in interpreting colored contents, a significant number of recoloring algorithms have been proposed in the literature with the purpose of improving the visual perception of those people somehow. However, most of those algorithms lack a systematic study of subjective assessment, what undermines their validity, not to say usefulness. Thus, in the sequel of the research work behind this Ph.D. thesis, the central question that needs to be answered is whether recoloring algorithms are of any usefulness and help for colorblind people or not. With this in mind, we conceived a few preliminary recoloring algorithms that were published in conference proceedings elsewhere. Except the algorithm detailed in Chapter 3, these conference algorithms are not described in this thesis, though they have been important to engender those presented here. The first algorithm (Chapter 3) was designed and implemented for people with dichromacy to improve their color perception. The idea is to project the reddish hues onto other hues that are perceived more regularly by dichromat people. The second algorithm (Chapter 4) is also intended for people with dichromacy to improve their perception of color, but its applicability covers the adaptation of text and image, in HTML5- compliant web environments. This enhancement of color contrast of text and imaging in web pages is done while keeping the naturalness of color as much as possible. Also, to the best of our knowledge, this is the first web recoloring approach targeted to dichromat people that takes into consideration both text and image recoloring in an integrated manner. The third algorithm (Chapter 5) primarily focuses on the enhancement of some of the object contours in still images, instead of recoloring the pixels of the regions bounded by such contours. Enhancing contours is particularly suited to increase contrast in images, where we find adjacent regions that are color indistinguishable from dichromat’s point of view. To our best knowledge, this is one of the first algorithms that take advantage of image analysis and processing techniques for region contours. After accurate subjective assessment studies for color-blind people, we concluded that the CVD adaptation methods are useful in general. Nevertheless, each method is not efficient enough to adapt all sorts of images, that is, the adequacy of each method depends on the type of image (photo-images, graphical representations, etc.). Furthermore, we noted that the experience-based perceptual learning of colorblind people throughout their lives determines their visual perception. That is, color adaptation algorithms must satisfy requirements such as color naturalness and consistency, to ensure that dichromat people improve their visual perception without artifacts. On the other hand, CVD adaptation algorithms should be object-oriented, instead of pixel-oriented (as typically done), to select judiciously pixels that should be adapted. This perspective opens an opportunity window for future research in color accessibility in the field of in human-computer interaction (HCI).A cor desempenha um papel fundamental na compreensão da informação em ambientes computacionais. Porém, cerca de 5% da população mundial é afetada pela deficiência de visão de cor (ou Color Vision Deficiency (CVD), do Inglês), correntemente designada por daltonismo. Esta insuficiência visual dificulta a perceção das cores, o que limita a perceção geral que os indivíduos têm sobre o meio, seja real ou virtual. Efetivamente, um indivíduo com CVD vê como iguais cores que são diferentes, o que origina confusão ou uma compreensão distorcida da realidade, assim como dos ambientes web, onde existe uma abundância de conteúdos média coloridos, como texto, imagens fixas e vídeo, entre outros. Com o intuito de mitigar as dificuldades que as pessoas com CVD enfrentam na interpretação de conteúdos coloridos, tem sido proposto na literatura um número significativo de algoritmos de recoloração, que têm como o objetivo melhorar, de alguma forma, a perceção visual de pessoas com CVD. Porém, a maioria desses trabalhos carece de um estudo sistemático de avaliação subjetiva, o que põe em causa a sua validação, se não mesmo a sua utilidade. Assim, a principal questão à qual se pretende responder, como resultado do trabalho de investigação subjacente a esta tese de doutoramento, é se os algoritmos de recoloração têm ou não uma real utilidade, constituindo assim uma ajuda efetiva às pessoas com daltonismo. Tendo em mente esta questão, concebemos alguns algoritmos de recoloração preliminares que foram publicados em atas de conferências. Com exceção do algoritmo descrito no Capítulo 3, esses algoritmos não são descritos nesta tese, não obstante a sua importância na conceção daqueles descritos nesta dissertação. O primeiro algoritmo (Capítulo 3) foi projetado e implementado para pessoas com dicromacia, a fim de melhorar a sua perceção da cor. A ideia consiste em projetar as cores de matiz avermelhada em matizes que são melhor percebidos pelas pessoas com os tipos de daltonismo em causa. O segundo algoritmo (Capítulo 4) também se destina a melhorar a perceção da cor por parte de pessoas com dicromacia, porém a sua aplicabilidade abrange a adaptação de texto e imagem, em ambientes web compatíveis com HTML5. Isto é conseguido através do realce do contraste de cores em blocos de texto e em imagens, em páginas da web, mantendo a naturalidade da cor tanto quanto possível. Além disso, tanto quanto sabemos, esta é a primeira abordagem de recoloração em ambiente web para pessoas com dicromacia, que trata o texto e a imagem de forma integrada. O terceiro algoritmo (Capítulo 5) centra-se principalmente na melhoria de alguns dos contornos de objetos em imagens, em vez de aplicar a recoloração aos pixels das regiões delimitadas por esses contornos. Esta abordagem é particularmente adequada para aumentar o contraste em imagens, quando existem regiões adjacentes que são de cor indistinguível sob a perspetiva dos observadores com dicromacia. Também neste caso, e tanto quanto é do nosso conhecimento, este é um dos primeiros algoritmos em que se recorre a técnicas de análise e processamento de contornos de regiões. Após rigorosos estudos de avaliação subjetiva com pessoas com daltonismo, concluiu-se que os métodos de adaptação CVD são úteis em geral. No entanto, cada método não é suficientemente eficiente para todos os tipo de imagens, isto é, o desempenho de cada método depende do tipo de imagem (fotografias, representações gráficas, etc.). Além disso, notámos que a aprendizagem perceptual baseada na experiência das pessoas daltónicas ao longo de suas vidas é determinante para perceber aquilo que vêem. Isto significa que os algoritmos de adaptação de cor devem satisfazer requisitos tais como a naturalidade e a consistência da cor, de modo a não pôr em causa aquilo que os destinatários consideram razoável ver no mundo real. Por outro lado, a abordagem seguida na adaptação CVD deve ser orientada aos objetos, em vez de ser orientada aos pixéis (como tem sido feito até ao momento), de forma a possibilitar uma seleção mais criteriosa dos pixéis que deverão ser sujeitos ao processo de adaptação. Esta perspectiva abre uma janela de oportunidade para futura investigação em acessibilidade da cor no domínio da interacção humano-computador (HCI)

    Chromatic filters for color vision deficiencies

    Get PDF
    Dissertação de mestrado em Optometria AvançadaAbout 10% of the population have some form of color vision deficiency. One of the most sever deficiencies is dichromacy. Dichromacy impairs color vision and impoverishes the discrimination of surface colors in natural scenes. Computational estimates based on hyperspectral imaging data from natural scenes suggest that dichromats can discriminate only about 7% of the number of colors discriminated by normal observers on natural scenes. These estimates, however, assume that the colors are equally frequent. Yet, pairs of color confused by dichromats may be rare and thus have small impact on the overall perceived chromatic diversity. By using an experimental setup that allows visual comparation between different spectra selected form hyperspectral images of natural scenes, it was estimated that the number of pairs that dichromats could discriminate was almost 70% of those discriminated by normal observers, a fraction much higher than anticipated from estimates of the number of discernible colors on natural scenes. Therefore, it may be rare for a dichromat to encounter two objects of different colors that he confounds. Thus, chromatic filters for color vision deficiencies intended to improve all colors in general may constitute low practical value. On this work it is proposed a method to compute filters specialized for a specific color-detection task, by taking into account the user’s color vision type, the local illuminant, and the reflectance spectra of the objects intended to be distinguished during that task. This method was applied on a case of a medical practitioner with protanopia to idealize a filter to improve detection of erythema on the skin of its patients. The filter improved the mean color difference between erythema and normal skin by 44%.Cerca de 10% da população possui alguma forma de deficiência de visão de cor. Uma das deficiências mais severas é a dicromacia. Dicromacia prejudica a visão das cores e empobrece a discriminação de superficies coloridas em cenas naturais. Estimativas computacionais baseadas em dados de imagens hiperespectrais de cenas naturais sugerem que dicromatas só pode discriminar cerca de 7% do número de cores discriminadas por observadores normais em cenas naturais. Estas estimativas, no entanto, assumem que todas as cores são igualmente frequentes. Contudo, pares de cores confundidos por dichromats podem ser raros e, portanto, têm pequeno impacto na diversidade cromática global percebida. Ao usar uma montagem experimental que permite comparação visual entre espectros diferentes selecionados a partir de imagens hiperespectrais de cenas naturais, estimou-se que o número de pares que dicromatas poderiam discriminar era quase 70% dos discriminados por observadores normais, uma fração muito maior do que o antecipado a partir de estimativas do número de cores percebidas em cenas naturais. Portanto, pode ser raro para um dicromat para encontrar dois objetos cujas cores ele confunda. Assim, filtros cromático para deficiências de visão das cores pretendidos para melhorar todas as cores em geral podem constituir baixo valor prático. Neste trabalho é proposto um método para calcular filtros especializados para uma tarefa específica de detecção de cor, tendo em conta o tipo de visão de cor do utilizador, o iluminante local, e os espectros de reflectancia dos objetos pretendidos a serem distinguidos durante essa tarefa. Este método foi aplicado em um caso de um médico com Protanopia para idealizar um filtro para melhorar a detecção de eritema na pele de seus pacientes. O filtro melhorou a diferença média de cor entre o eritema e a pele normal por 44%

    Individualized Models of Colour Differentiation through Situation-Specific Modelling

    Get PDF
    In digital environments, colour is used for many purposes: for example, to encode information in charts, signify missing field information on websites, and identify active windows and menus. However, many people have inherited, acquired, or situationally-induced Colour Vision Deficiency (CVD), and therefore have difficulties differentiating many colours. Recolouring tools have been developed that modify interface colours to make them more differentiable for people with CVD, but these tools rely on models of colour differentiation that do not represent the majority of people with CVD. As a result, existing recolouring tools do not help most people with CVD. To solve this problem, I developed Situation-Specific Modelling (SSM), and applied it to colour differentiation to develop the Individualized model of Colour Differentiation (ICD). SSM utilizes an in-situ calibration procedure to measure a particular user’s abilities within a particular situation, and a modelling component to extend the calibration measurements into a full representation of the user’s abilities. ICD applies in-situ calibration to measuring a user’s unique colour differentiation abilities, and contains a modelling component that is capable of representing the colour differentiation abilities of almost any individual with CVD. This dissertation presents four versions of the ICD and one application of the ICD to recolouring. First, I describe the development and evaluation of a feasibility implementation of the ICD that tests the viability of the SSM approach. Second, I present revised calibration and modelling components of the ICD that reduce the calibration time from 32 minutes to two minutes. Next, I describe the third and fourth ICD versions that improve the applicability of the ICD to recolouring tools by reducing the colour differentiation prediction time and increasing the power of each prediction. Finally, I present a new recolouring tool (ICDRecolour) that uses the ICD model to steer the recolouring process. In a comparative evaluation, ICDRecolour achieved 90% colour matching accuracy for participants – 20% better than existing recolouring tools – for a wide range of CVDs. By modelling the colour differentiation abilities of a particular user in a particular environment, the ICD enables the extension of recolouring tools to helping most people with CVD, thereby reducing the difficulties that people with CVD experience when using colour in digital environments
    • …
    corecore