115 research outputs found

    Automatic speech recognition with deep neural networks for impaired speech

    Get PDF
    The final publication is available at https://link.springer.com/chapter/10.1007%2F978-3-319-49169-1_10Automatic Speech Recognition has reached almost human performance in some controlled scenarios. However, recognition of impaired speech is a difficult task for two main reasons: data is (i) scarce and (ii) heterogeneous. In this work we train different architectures on a database of dysarthric speech. A comparison between architectures shows that, even with a small database, hybrid DNN-HMM models outperform classical GMM-HMM according to word error rate measures. A DNN is able to improve the recognition word error rate a 13% for subjects with dysarthria with respect to the best classical architecture. This improvement is higher than the one given by other deep neural networks such as CNNs, TDNNs and LSTMs. All the experiments have been done with the Kaldi toolkit for speech recognition for which we have adapted several recipes to deal with dysarthric speech and work on the TORGO database. These recipes are publicly available.Peer ReviewedPostprint (author's final draft

    Learning to detect dysarthria from raw speech

    Full text link
    Speech classifiers of paralinguistic traits traditionally learn from diverse hand-crafted low-level features, by selecting the relevant information for the task at hand. We explore an alternative to this selection, by learning jointly the classifier, and the feature extraction. Recent work on speech recognition has shown improved performance over speech features by learning from the waveform. We extend this approach to paralinguistic classification and propose a neural network that can learn a filterbank, a normalization factor and a compression power from the raw speech, jointly with the rest of the architecture. We apply this model to dysarthria detection from sentence-level audio recordings. Starting from a strong attention-based baseline on which mel-filterbanks outperform standard low-level descriptors, we show that learning the filters or the normalization and compression improves over fixed features by 10% absolute accuracy. We also observe a gain over OpenSmile features by learning jointly the feature extraction, the normalization, and the compression factor with the architecture. This constitutes a first attempt at learning jointly all these operations from raw audio for a speech classification task.Comment: 5 pages, 3 figures, submitted to ICASS

    Towards Personalized Synthesized Voices for Individuals with Vocal Disabilities: Voice Banking and Reconstruction

    Get PDF
    When individuals lose the ability to produce their own speech, due to degenerative diseases such as motor neurone disease (MND) or Parkinson’s, they lose not only a functional means of communication but also a display of their individual and group identity. In order to build personalized synthetic voices, attempts have been made to capture the voice before it is lost, using a process known as voice banking. But, for some patients, the speech deterioration frequently coincides or quickly follows diagnosis. Using HMM-based speech synthesis, it is now possible to build personalized synthetic voices with minimal data recordings and even disordered speech. The power of this approach is that it is possible to use the patient’s recordings to adapt existing voice models pre-trained on many speakers. When the speech has begun to deteriorate, the adapted voice model can be further modified in order to compensate for the disordered characteristics found in the patient’s speech. The University of Edinburgh has initiated a project for voice banking and reconstruction based on this speech synthesis technology. At the current stage of the project, more than fifteen patients with MND have already been recorded and five of them have been delivered a reconstructed voice. In this paper, we present an overview of the project as well as subjective assessments of the reconstructed voices and feedback from patients and their families

    Modeling Sub-Band Information Through Discrete Wavelet Transform to Improve Intelligibility Assessment of Dysarthric Speech

    Get PDF
    The speech signal within a sub-band varies at a fine level depending on the type, and level of dysarthria. The Mel-frequency filterbank used in the computation process of cepstral coefficients smoothed out this fine level information in the higher frequency regions due to the larger bandwidth of filters. To capture the sub-band information, in this paper, four-level discrete wavelet transform (DWT) decomposition is firstly performed to decompose the input speech signal into approximation and detail coefficients, respectively, at each level. For a particular input speech signal, five speech signals representing different sub-bands are then reconstructed using inverse DWT (IDWT). The log filterbank energies are computed by analyzing the short-term discrete Fourier transform magnitude spectra of each reconstructed speech using a 30-channel Mel-filterbank. For each analysis frame, the log filterbank energies obtained across all reconstructed speech signals are pooled together, and discrete cosine transform is performed to represent the cepstral feature, here termed as discrete wavelet transform reconstructed (DWTR)- Mel frequency cepstral coefficient (MFCC). The i-vector based dysarthric level assessment system developed on the universal access speech corpus shows that the proposed DTWRMFCC feature outperforms the conventional MFCC and several other cepstral features reported for a similar task. The usages of DWTR- MFCC improve the detection accuracy rate (DAR) of the dysarthric level assessment system in the text and the speaker-independent test case to 60.094 % from 56.646 % MFCC baseline. Further analysis of the confusion matrices shows that confusion among different dysarthric classes is quite different for MFCC and DWTR-MFCC features. Motivated by this observation, a two-stage classification approach employing discriminating power of both kinds of features is proposed to improve the overall performance of the developed dysarthric level assessment system. The two-stage classification scheme further improves the DAR to 65.813 % in the text and speaker- independent test case

    Improving Dysarthric Speech Recognition by Enriching Training Datasets

    Get PDF
    Dysarthria is a motor speech disorder that results from disruptions in the neuro-motor interface and is characterised by poor articulation of phonemes and hyper-nasality and is characteristically different from normal speech. Many modern automatic speech recognition systems focus on a narrow range of speech diversity therefore as a consequence of this they exclude a groups of speakers who deviate in aspects of gender, race, age and speech impairment when building training datasets. This study attempts to develop an automatic speech recognition system that deals with dysarthric speech with limited dysarthric speech data. Speech utterances collected from the TORGO database are used to conduct experiments on a wav2vec2.0 model only trained on the Librispeech 960h dataset to obtain a baseline performance of the word error rate (WER) when recognising dysarthric speech. A version of the Librispeech model fine-tuned on multi-language datasets was tested to see if it would improve accuracy and achieved a top reduction of 24.15% in the WER for one of the male dysarthric speakers in the dataset. Transfer learning with speech recognition models and preprocessing dysarthric speech to improve its intelligibility by using general adversarial networks were limited in their potential due to a lack of dysarthric speech dataset of adequate size to use these technologies. The main conclusion drawn from this study is that a large diverse dysarthric speech dataset comparable to the size of datasets used to train machine learning ASR systems like Librispeech,with different types of speech, scripted and unscripted, is required to improve performance.

    Deep Transfer Learning for Automatic Speech Recognition: Towards Better Generalization

    Full text link
    Automatic speech recognition (ASR) has recently become an important challenge when using deep learning (DL). It requires large-scale training datasets and high computational and storage resources. Moreover, DL techniques and machine learning (ML) approaches in general, hypothesize that training and testing data come from the same domain, with the same input feature space and data distribution characteristics. This assumption, however, is not applicable in some real-world artificial intelligence (AI) applications. Moreover, there are situations where gathering real data is challenging, expensive, or rarely occurring, which can not meet the data requirements of DL models. deep transfer learning (DTL) has been introduced to overcome these issues, which helps develop high-performing models using real datasets that are small or slightly different but related to the training data. This paper presents a comprehensive survey of DTL-based ASR frameworks to shed light on the latest developments and helps academics and professionals understand current challenges. Specifically, after presenting the DTL background, a well-designed taxonomy is adopted to inform the state-of-the-art. A critical analysis is then conducted to identify the limitations and advantages of each framework. Moving on, a comparative study is introduced to highlight the current challenges before deriving opportunities for future research

    Towards Automatic Speech-Language Assessment for Aphasia Rehabilitation

    Full text link
    Speech-based technology has the potential to reinforce traditional aphasia therapy through the development of automatic speech-language assessment systems. Such systems can provide clinicians with supplementary information to assist with progress monitoring and treatment planning, and can provide support for on-demand auxiliary treatment. However, current technology cannot support this type of application due to the difficulties associated with aphasic speech processing. The focus of this dissertation is on the development of computational methods that can accurately assess aphasic speech across a range of clinically-relevant dimensions. The first part of the dissertation focuses on novel techniques for assessing aphasic speech intelligibility in constrained contexts. The second part investigates acoustic modeling methods that lead to significant improvement in aphasic speech recognition and allow the system to work with unconstrained speech samples. The final part demonstrates the efficacy of speech recognition-based analysis in automatic paraphasia detection, extraction of clinically-motivated quantitative measures, and estimation of aphasia severity. The methods and results presented in this work will enable robust technologies for accurately recognizing and assessing aphasic speech, and will provide insights into the link between computational methods and clinical understanding of aphasia.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/140840/1/ducle_1.pd

    Exploring appropriate acoustic and language modelling choices for continuous dysarthric speech recognition

    Get PDF
    There has been much recent interest in building continuous speech recognition systems for people with severe speech impairments, e.g., dysarthria. However, the datasets that are commonly used are typically designed for tasks other than ASR development, or they contain only isolated words. As such, they contain much overlap in the prompts read by the speakers. Previous ASR evaluations have often neglected this, using language models (LMs) trained on non-disjoint training and test data, potentially producing unrealistically optimistic results. In this paper, we investigate the impact of LM design using the widely used TORGO database. We combine state-of-the-art acoustic models with LMs trained with data originating from LibriSpeech. Using LMs with varying vocabulary size, we examine the trade-off between the out-of-vocabulary rate and recognition confusions for speakers with varying degrees of dysarthria. It is found that the optimal LM complexity is highly speaker dependent, highlighting the need to design speaker-dependent LMs alongside speaker-dependent acoustic models when considering atypical speech
    corecore